User's Manual
Table Of Contents
- Contents
- Tables
- Figures
- 1 Introduction
- 2 Interface Characteristics
- 2.1 Application Interface
- 2.1.1 Pad Assignment
- 2.1.2 Signal Properties
- 2.1.3 USB Interface
- 2.1.4 Serial Interface ASC0
- 2.1.5 Serial Interface ASC1
- 2.1.6 UICC/SIM/USIM Interface
- 2.1.7 Digital Audio Interface
- 2.1.8 Pulse Code Modulation Interface (PCM)
- 2.1.9 Inter IC Sound Interface (I2S)
- 2.1.10 GPIO Interface
- 2.1.11 I2C Interface
- 2.1.12 SPI Interface
- 2.1.13 Pulse Counter
- 2.1.14 HSIC Interface (ELS51-VA Only)
- 2.1.15 SDIO Interface (ELS51-VA Only)
- 2.1.16 Control Signals
- 2.2 RF Antenna Interface
- 2.3 Sample Application
- 2.1 Application Interface
- 3 Operating Characteristics
- 3.1 Operating Modes
- 3.2 Power Up/Power Down Scenarios
- 3.3 Power Saving
- 3.4 Power Supply
- 3.5 Operating Temperatures
- 3.6 Electrostatic Discharge
- 3.7 Blocking against RF on Interface Lines
- 3.8 Reliability Characteristics
- 4 Mechanical Dimensions, Mounting and Packaging
- 5 Regulatory and Type Approval Information
- 6 Document Information
- 7 Appendix
Cinterion
®
ELS31-VA/ELS51-VA Hardware Interface Description
2.3 Sample Application
56
ELS31-VA_ELS51-VA_HID_v01.000 2017-01-04
Confidential / Preliminary
Page 54 of 106
2.3 Sample Application
Figure 29 shows a typical example of how to integrate a ELS31-VA/ELS51-VA module with an
application. Usage of the various host interfaces depends on the desired features of the appli-
cation.
Because of the high RF field density inside the module, it cannot be guaranteed that no self
interference might occur, depending on frequency and the applications grounding concept. The
potential interferers may be minimized by placing small capacitors (47pF) at suspected lines
(e.g. RXD0, or ON).
While developing SMT applications it is strongly recommended to provide test points
for certain signals, i.e., lines to and from the module - for debug and/or test purposes.
The SMT application should allow for an easy access to these signals. For details on
how to implement test points see [4].
The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for
an individual application is very much determined by the overall layout and, especially, the po-
sition of components. For example, mounting the internal acoustic transducers directly on the
PCB eliminates the need to use the ferrite beads shown in the sample schematic.
Depending on the micro controller used by an external application the module‘s digital input
and output lines may require level conversion. Section 2.3.2 shows a possible sample level
conversion circuit.
Note: ELS31-VA/ELS51-VA is not intended for use with cables longer than 3m.
Disclaimer
No warranty, either stated or implied, is provided on the sample schematic diagram shown in
Figure 29 and the information detailed in this section. As functionality and compliance with na-
tional regulations depend to a great amount on the used electronic components and the indi-
vidual application layout manufacturers are required to ensure adequate design and operating
safeguards for their products using ELS31-VA/ELS51-VA modules.