User's Manual
Table Of Contents
- 1.0 INTRODUCTION
- 2.0 MODEL NUMBER CODES
- 3.0 HARDWARE INSTALLATION AND BASIC INTERFACE REQUIREMENTS
- 4.0 INITIAL STARTUP AND CONFIGURATION
- 4.1 Introduction
- 4.2 STEP 1—Power up the LEDR Radios
- 4.3 STEP 2—Establish Communications with the Radio
- 4.4 STEP 3—Make Initial Login to Radio
- 4.5 STEP 4—Change the SUPER Password
- 4.6 STEP 5—Review Essential Operating Parameters
- 4.7 STEP 6—Set TCP/IP Settings to Enable SNMP and/or Telnet Management (if required)
- 4.8 STEP 7—Set User Configurable Fields
- 4.9 STEP 8—Verify Radio Performance
- 4.10 STEP 9—Install the Link
- 4.11 STEP 10—Verify the Link Performance
- 5.0 CONFIGURATION AND CONTROL VIA THE FRONT PANEL
- 6.0 CONFIGURATIONAND CONTROL VIA THE CONSOLE PORT
- 7.0 STANDARDIZING RADIO CONFIGURATIONS
- 8.0 UPGRADING LEDR FIRMWARE
- 9.0 USING ORDERWIRE
- 10.0 USING THE SERVICE CHANNEL
- 11.0 PROTECTED CONFIGURATION
- 12.0 SPACE DIVERSITY OPERATION
- 13.0 SPARE PARTS, UNITS AND ACCESSORIES
- 14.0 Fractional-T1 INTERFACE CARD 03-3846A01 Fractional-E1 INTERFACE CARD 03-3846A02
- 15.0 INCREASE BANDWIDTH BY CHANGING TRANSMITTER AND RECEIVER FILTERS
- 16.0 BENCH TESTING OF RADIOS
- 17.0 TECHNICAL REFERENCE
- 17.1 Specifications— Models: LEDR 400S, 700S, 900S and1400S
- 17.2 Specifications— Models: LEDR 400F, 900F, 1400F
- 17.3 Specifications— Protected Switch Chassis
- 17.4 Optional Equipment (Consult factory for detailed information)
- 17.5 Accessories
- 17.6 I/O Connector Pinout Information
- 17.7 Watts-dBm-Volts Conversion
- 18.0 RADIO EVENT CODES
- 19.0 IN CASE OF DIFFICULTY
MDS 05-3627A01, Rev. D LEDR Series I/O Guide 21
Repeater
Configuration
Data and RF cabling for the repeater station configuration is shown in
Figure 14.
Figure 13. Inter-unit Cabling—Repeater Configuration
Protected
Configuration
The Service Channel connections on the LEDR radio chassis in a pro-
tected configuration should not be used. The
SERVICE CHANNEL con-
nector of the Protected Switch Chassis (PSC) provides a connection to
the two radio units. For further information on protected configurations
please see “PROTECTED CONFIGURATION” on Page 103.
Alarm I/O
This is a 9-pin connector that has both inputs and outputs.
Output Contacts The ALARMS Port is outfitted with four optically-isolated relays that are
controlled by the LEDR radio’s CPU. The contacts (Pins 6, 7, 8, & 9)
are normally open and can handle a non-inductive load of ±60 Volts
Peak (AC/DC) at a maximum current of 1 Ampere. These are suitable
for the control of an external device or indicator when a radio event
occurs.
An alarm output could be used, for example, to sound a claxon when the
radio link goes down, or when the battery for the real-time clock is low.
Another example is to use the alarm outputs to drive the inputs of an
external monitoring system. (See the list of radio events for more
options.) These outputs are not suitable for data interface without the use
of an external “debouncing” circuit.
TX
External
Data Interface
EIA-530-A
Ethernet
NMS
Service
Channel
Alarm I/O DC Power Input
EIA-530-A
Ethernet
NMS
Data Interface
Service
Channel
Alarm I/O DC Power Input
TO ANTENNA SYSTEM A
(Radios with internal duplexers)
RX
UP TO 4 x G.703
CROSSOVER CABLES
(Fullrate only)
TX
External
RX
G.703/Expansion Data
G.703/Expansion Data
RADIO A
RADIO B
EIA-530 NULL-MODEM
CROSSOVER CABLE
(Subrate Only)
P/N 97-2841L06 (6´/1.8 m)
ETHERNET CROSSOVER CABLE
OR
SEPARATE CONNECTIONS TO HUB
(As Required)
TO DUPLEXER
OF ANTENNA SYSTEM A
(Radios with external duplexer)
TO DUPLEXER
OF ANTENNA SYSTEM B
(Radios with external duplexer)
TO ANTENNA SYSTEM B
(Radios with internal duplexers)