User's Manual
Table Of Contents
- 1.0 ABOUT THIS MANUAL
- 2.0 PRODUCT DESCRIPTION
- Multiple Address Systems (MAS)
- Point-to-Point System
- Adding a Tail-End Link to an Existing Network
- Extending a TransNET Network with a Repeater
- 3.0 INSTALLATION PLANNING
- Terrain and Signal Strength
- Conducting a Site Survey
- Antennas
- Feedlines
- Antenna System Ground
- 4.0 INSTALLATION
- 4.1 Transceiver Installation
- a. Set the Mode using the MODE M (Master), MODE R (Remote), or MODE X (Extension) command. (Note: There can be only one Master r...
- b. Set a unique Network Address (1-65000) using ADDR command. Each radio in the system must have the same network address. Tip: Use the last four digits of the Master’s serial number to help avoid conflicts with other users.
- c. Set the baud rate/data interface parameters. Default setting is 9600 bps, 8 data bits, no parity, 1 stop bit. If changes are ...
- 4.2 Configuring Multiple Remote Units
- 4.3 Tail-End Links
- 4.4 Configuring a Network for Extensions
- 4.1 Transceiver Installation
- 5.0 OPERATION
- Antenna Aiming
- Antenna SWR Check
- Data Buffer Setting-Modbus Protocol
- Hoptime Setting
- TotalFlow™ Protocol at 9600 with Sleep Mode
- Operation at 115200 bps
- Baud Rate Setting
- Radio Interference Checks
- 6.0 RADIO PROGRAMMING
- Terminal Interface
- PC-Based Configuration Tool
- Entering Commands
- ADDR [1-65000]
- AMASK [0000 0000-FFFF FFFF]
- AT [ON, OFF]
- ASENSE [HI/LO]
- BAUD [xxxxx abc]
- BAND [A, B, C]
- BUFF [ON, OFF]
- CODE [NONE, 1…255]
- CSADDR [1-65000, NONE]
- CTS [0-255]
- CTSHOLD [0-60000]
- DEVICE [DCE, CTS KEY]
- DLINK [xxxxx/ON/OFF]
- DKEY
- DTYPE [NODE/ROOT]
- FEC [ON, OFF]
- HOPTIME [7, 14, 28]
- INIT
- HREV
- KEY
- LED [ON, OFF]
- LPM [1, 0]
- LPMHOLD [0-1000]
- MODE [M, R, X]
- MRSSI [NONE, -40...-90]
- OT [ON, OFF]
- OWM [xxxxx]
- OWN [xxxxx]
- PORT [RS232, RS485]
- PWR [20-30]
- REPEAT [0-10]
- RETRY [0-10]
- RSSI
- RTU [ON, OFF, 0-80]
- RX [xxxx]
- RXD [0-235] / [ON/OFF]
- RXTOT [NONE, 0-1440]
- SAF [ON, OFF]
- SETUP
- SER
- SHOW CON
- SHOW PWR
- SHOW SYNC
- SKIP [NONE, 1...8]
- SLEEP [ON, OFF]
- SREV
- STAT
- TEMP
- TX [xxxx]
- UNIT [10000-65000]
- XADDR [0-31]
- XMAP [00000000-FFFFFFFF]
- XPRI [0-31]
- XRSSI [NONE, -40...-120]
- ZONE CLEAR
- ZONE DATA
- 7.0 TROUBLESHOOTING
- Checking for Alarms-STAT command
- Major Alarms versus Minor Alarms
- Alarm Code Definitions
- 8.0 RADIO FIRMWARE UPGRADES
- Saving a Web-Site Firmware File Onto Your PC
- 9.0 OPERATING PRINCIPLES AND CONFIGURATION
- Simple Extended SAF Network
- Extended SAF Network
- Retransmission and ARQ Operation
- SAF Configuration Example
- 1. Mode X and M Radios-Can have direct reports (Mode R radios) outside of the chain.
- 2. Data (Payload)-Travels from Master to Remote, and back from Remote to Master.
- 3. Mode X and R Radios-Extension links can be protected by mapping one or more fall-back paths in case of a failure. Add seconda...
- 9.2 Synchronizing Network Units
- Synchronization Messages
- Sleep Mode Example
- Setup Commands
- Reading RSSI and Other Parameters with LPM Enabled
- Power Consumption Influence by HOPTIME and SAF Settings
- Introduction
- Operational Influences-Hoptime & SAF
- Master Station Configuration
- Antenna System for Co-Located Master Stations
- 10.0 TECHNICAL REFERENCE
- 10.1 Product Specifications-900 MHz
- 10.2 Product Specifications-2.4 GHz
- 10.3 Diagnostic Interface Connections (RJ-11)
- 10.4 Data Interface Connections (DB-9F)
- Pin Descriptions-RS/EIA-232 Mode
- Pin Descriptions-RS/EIA-422/485 Mode
- Using the I/O Points with InSite™ NMS Software
- Application Example-Digital Input and Output at a Remote
64 MDS TransNET I&O Guide MDS 05-2708A01, Rev. D
in order to reduce the interference to the point where overload of one network
by the other will not occur. The CSADDR command will provide relief from
this antenna separation requirement by operating the networks in a TDD
mode and ensuring that one Master cannot transmit while the other (or
multiple others) are trying to receive a signal from a distant radio.
Master Station Configuration
On all Masters for which you wish to synchronize transmissions, establish
one Master as the “Clock-Sync Master by setting its CSADDR value to it own
Network Address (ADDR xxxxx). Then, set all other dependent Masters
CSADDR values to the Network Address (ADDR) of the Clock-Sync Master.
Make sure that you use a different Network Address (ADDR) for each Master.
This value will be used to identify all units associated with this Master’s
network.
Note that all Masters must be set to the same CSADDR setting, but only one
where the CSADDR matches its own ADDR; this is the Clock-Sync Master.
CSADDR = ADDR
—Unit serving as a Clock-Sync Master
CSADDR ≠≠
≠≠
ADDR
—Unit serves as a Dependent Master (Clock Slave)
CSADDR = NONE
—Co-located Master feature disabled (default)
HOPTIME, FEC and SAF values are provided by the Clock-Sync Master to all
dependent units.
NOTE: If a Dependent Master station is unable to find the Clock-Sync Master station, it
will not be able to operate properly and the associated network will be
out-of-service.
Antenna System for Co-Located Master Stations
Using this TDD (Clock-Sync) mode will prevent any two Masters from trans-
mitting at the same time and greatly reduce the antenna separation require-
ments to near zero. Under this arrangement, the antennas of co-located
Masters may be placed a few feet (less than a meter) apart horizontally, or just
above or below vertically with no ill effects. There are two common antenna
system arrangements:
Sharing a Common Antenna System
It is possible to share an antenna between multiple Masters using stan-
dard power dividers, as long as the extra loss associated with these
devices is taken into account in your RF budgeting process. Masters in
this configuration must be operating with Clock-Sync (
CSADDR)
enabled.
For example, the two Master stations shown in Figure 20 are connected
to a common antenna system. They use a power-divider that will result
in a signal loss of 3 dB, or one-half power level, on both transmit and
receive signals.
The power divider, such as a Mini-Circuits ZAPD-1 or similar product,
must be capable of handling 1 Watt and have >25 dB isolation between
TX ports.