User's Manual
Table Of Contents
- 1.0 ABOUT THIS MANUAL
- 2.0 PRODUCT DESCRIPTION
- Multiple Address Systems (MAS)
- Point-to-Point System
- Adding a Tail-End Link to an Existing Network
- Extending a TransNET Network with a Repeater
- 3.0 INSTALLATION PLANNING
- Terrain and Signal Strength
- Conducting a Site Survey
- Antennas
- Feedlines
- Antenna System Ground
- 4.0 INSTALLATION
- 4.1 Transceiver Installation
- a. Set the Mode using the MODE M (Master), MODE R (Remote), or MODE X (Extension) command. (Note: There can be only one Master r...
- b. Set a unique Network Address (1-65000) using ADDR command. Each radio in the system must have the same network address. Tip: Use the last four digits of the Master’s serial number to help avoid conflicts with other users.
- c. Set the baud rate/data interface parameters. Default setting is 9600 bps, 8 data bits, no parity, 1 stop bit. If changes are ...
- 4.2 Configuring Multiple Remote Units
- 4.3 Tail-End Links
- 4.4 Configuring a Network for Extensions
- 4.1 Transceiver Installation
- 5.0 OPERATION
- Antenna Aiming
- Antenna SWR Check
- Data Buffer Setting-Modbus Protocol
- Hoptime Setting
- TotalFlow™ Protocol at 9600 with Sleep Mode
- Operation at 115200 bps
- Baud Rate Setting
- Radio Interference Checks
- 6.0 RADIO PROGRAMMING
- Terminal Interface
- PC-Based Configuration Tool
- Entering Commands
- ADDR [1-65000]
- AMASK [0000 0000-FFFF FFFF]
- AT [ON, OFF]
- ASENSE [HI/LO]
- BAUD [xxxxx abc]
- BAND [A, B, C]
- BUFF [ON, OFF]
- CODE [NONE, 1…255]
- CSADDR [1-65000, NONE]
- CTS [0-255]
- CTSHOLD [0-60000]
- DEVICE [DCE, CTS KEY]
- DLINK [xxxxx/ON/OFF]
- DKEY
- DTYPE [NODE/ROOT]
- FEC [ON, OFF]
- HOPTIME [7, 14, 28]
- INIT
- HREV
- KEY
- LED [ON, OFF]
- LPM [1, 0]
- LPMHOLD [0-1000]
- MODE [M, R, X]
- MRSSI [NONE, -40...-90]
- OT [ON, OFF]
- OWM [xxxxx]
- OWN [xxxxx]
- PORT [RS232, RS485]
- PWR [20-30]
- REPEAT [0-10]
- RETRY [0-10]
- RSSI
- RTU [ON, OFF, 0-80]
- RX [xxxx]
- RXD [0-235] / [ON/OFF]
- RXTOT [NONE, 0-1440]
- SAF [ON, OFF]
- SETUP
- SER
- SHOW CON
- SHOW PWR
- SHOW SYNC
- SKIP [NONE, 1...8]
- SLEEP [ON, OFF]
- SREV
- STAT
- TEMP
- TX [xxxx]
- UNIT [10000-65000]
- XADDR [0-31]
- XMAP [00000000-FFFFFFFF]
- XPRI [0-31]
- XRSSI [NONE, -40...-120]
- ZONE CLEAR
- ZONE DATA
- 7.0 TROUBLESHOOTING
- Checking for Alarms-STAT command
- Major Alarms versus Minor Alarms
- Alarm Code Definitions
- 8.0 RADIO FIRMWARE UPGRADES
- Saving a Web-Site Firmware File Onto Your PC
- 9.0 OPERATING PRINCIPLES AND CONFIGURATION
- Simple Extended SAF Network
- Extended SAF Network
- Retransmission and ARQ Operation
- SAF Configuration Example
- 1. Mode X and M Radios-Can have direct reports (Mode R radios) outside of the chain.
- 2. Data (Payload)-Travels from Master to Remote, and back from Remote to Master.
- 3. Mode X and R Radios-Extension links can be protected by mapping one or more fall-back paths in case of a failure. Add seconda...
- 9.2 Synchronizing Network Units
- Synchronization Messages
- Sleep Mode Example
- Setup Commands
- Reading RSSI and Other Parameters with LPM Enabled
- Power Consumption Influence by HOPTIME and SAF Settings
- Introduction
- Operational Influences-Hoptime & SAF
- Master Station Configuration
- Antenna System for Co-Located Master Stations
- 10.0 TECHNICAL REFERENCE
- 10.1 Product Specifications-900 MHz
- 10.2 Product Specifications-2.4 GHz
- 10.3 Diagnostic Interface Connections (RJ-11)
- 10.4 Data Interface Connections (DB-9F)
- Pin Descriptions-RS/EIA-232 Mode
- Pin Descriptions-RS/EIA-422/485 Mode
- Using the I/O Points with InSite™ NMS Software
- Application Example-Digital Input and Output at a Remote
MDS 05-2708A01, Rev. D MDS TransNET I&O Guide 63
Operational Influences—Hoptime & SAF
The synchronization period is influenced by two parameters’
values—HOPTIME and SAF (Store-and-Forward). Table 26 shows several
configurations and the associated synchronization period value.
9.9 MIRRORED BITS™ Protocol Support
TransNET radios are compatible with Schweitzer’s Mirrored Bits MB8
protocol, provided complementary firmware (06-4045A01) is installed in all
network radios. A detailed application guide (AG2003-07) is available from
Schweitzer Engineering Labs Web site, www.SELinc.com/aglist.htm, or
from Microwave Data Systems’ Web site at www.microwavedata.com.
9.10 Seamless Mode Emulation
The RXD command assumes the payload message will be ready for transmis-
sion after the delay period has expired. If there is a chance the payload data
may be delayed, it is recommended to use the BUFF(er) command to make
sure the entire message is received before delivery is started. The BUFF
command provides a highly-reliable seamless operating mode, but can be
very slow to start, especially if it waits for the reception of long messages
before passing on the message.
9.11 Full-Duplex Emulation
If your system design needs to support PTP or Point-to-Multipoint applica-
tions and your communications must appear to be full-duplex to the
connected devices, set the Master to CSADDR xxxxx (where xxxxx is the
Network Address (
ADDR). This will place the system in a time-division
duplex mode (TDD). The radio system will appear to be full-duplex to the
connected devices, but actually operates half-duplex over the radio link. Data
is buffered by the transmitting side until it is its turn to transmit. Throughput
will be approximately 1/2 of the
DATA interface rate.
9.12 Co-Located and Close-Proximity Masters
If your requirements call for multiple TransNET networks at the same loca-
tion, you need to ensure that interference between the systems in minimized
to prevent overload that will diminish the performance of the radios. Tradi-
tionally, vertical separation of the antennas of co-located radios was required
Table 26. Synchronization Period versus
Hoptime and SAF Settings
Sync Period Hoptime Value SAF
441 ms 7 OFF
1.8 sec 28 OFF
3.5 sec 28 ON