User's Manual
Table Of Contents
- 1.0 ABOUT THIS MANUAL
- 2.0 PRODUCT DESCRIPTION
- Multiple Address Systems (MAS)
- Point-to-Point System
- Adding a Tail-End Link to an Existing Network
- Extending a TransNET Network with a Repeater
- 3.0 INSTALLATION PLANNING
- Terrain and Signal Strength
- Conducting a Site Survey
- Antennas
- Feedlines
- Antenna System Ground
- 4.0 INSTALLATION
- 4.1 Transceiver Installation
- a. Set the Mode using the MODE M (Master), MODE R (Remote), or MODE X (Extension) command. (Note: There can be only one Master r...
- b. Set a unique Network Address (1-65000) using ADDR command. Each radio in the system must have the same network address. Tip: Use the last four digits of the Master’s serial number to help avoid conflicts with other users.
- c. Set the baud rate/data interface parameters. Default setting is 9600 bps, 8 data bits, no parity, 1 stop bit. If changes are ...
- 4.2 Configuring Multiple Remote Units
- 4.3 Tail-End Links
- 4.4 Configuring a Network for Extensions
- 4.1 Transceiver Installation
- 5.0 OPERATION
- Antenna Aiming
- Antenna SWR Check
- Data Buffer Setting-Modbus Protocol
- Hoptime Setting
- TotalFlow™ Protocol at 9600 with Sleep Mode
- Operation at 115200 bps
- Baud Rate Setting
- Radio Interference Checks
- 6.0 RADIO PROGRAMMING
- Terminal Interface
- PC-Based Configuration Tool
- Entering Commands
- ADDR [1-65000]
- AMASK [0000 0000-FFFF FFFF]
- AT [ON, OFF]
- ASENSE [HI/LO]
- BAUD [xxxxx abc]
- BAND [A, B, C]
- BUFF [ON, OFF]
- CODE [NONE, 1…255]
- CSADDR [1-65000, NONE]
- CTS [0-255]
- CTSHOLD [0-60000]
- DEVICE [DCE, CTS KEY]
- DLINK [xxxxx/ON/OFF]
- DKEY
- DTYPE [NODE/ROOT]
- FEC [ON, OFF]
- HOPTIME [7, 14, 28]
- INIT
- HREV
- KEY
- LED [ON, OFF]
- LPM [1, 0]
- LPMHOLD [0-1000]
- MODE [M, R, X]
- MRSSI [NONE, -40...-90]
- OT [ON, OFF]
- OWM [xxxxx]
- OWN [xxxxx]
- PORT [RS232, RS485]
- PWR [20-30]
- REPEAT [0-10]
- RETRY [0-10]
- RSSI
- RTU [ON, OFF, 0-80]
- RX [xxxx]
- RXD [0-235] / [ON/OFF]
- RXTOT [NONE, 0-1440]
- SAF [ON, OFF]
- SETUP
- SER
- SHOW CON
- SHOW PWR
- SHOW SYNC
- SKIP [NONE, 1...8]
- SLEEP [ON, OFF]
- SREV
- STAT
- TEMP
- TX [xxxx]
- UNIT [10000-65000]
- XADDR [0-31]
- XMAP [00000000-FFFFFFFF]
- XPRI [0-31]
- XRSSI [NONE, -40...-120]
- ZONE CLEAR
- ZONE DATA
- 7.0 TROUBLESHOOTING
- Checking for Alarms-STAT command
- Major Alarms versus Minor Alarms
- Alarm Code Definitions
- 8.0 RADIO FIRMWARE UPGRADES
- Saving a Web-Site Firmware File Onto Your PC
- 9.0 OPERATING PRINCIPLES AND CONFIGURATION
- Simple Extended SAF Network
- Extended SAF Network
- Retransmission and ARQ Operation
- SAF Configuration Example
- 1. Mode X and M Radios-Can have direct reports (Mode R radios) outside of the chain.
- 2. Data (Payload)-Travels from Master to Remote, and back from Remote to Master.
- 3. Mode X and R Radios-Extension links can be protected by mapping one or more fall-back paths in case of a failure. Add seconda...
- 9.2 Synchronizing Network Units
- Synchronization Messages
- Sleep Mode Example
- Setup Commands
- Reading RSSI and Other Parameters with LPM Enabled
- Power Consumption Influence by HOPTIME and SAF Settings
- Introduction
- Operational Influences-Hoptime & SAF
- Master Station Configuration
- Antenna System for Co-Located Master Stations
- 10.0 TECHNICAL REFERENCE
- 10.1 Product Specifications-900 MHz
- 10.2 Product Specifications-2.4 GHz
- 10.3 Diagnostic Interface Connections (RJ-11)
- 10.4 Data Interface Connections (DB-9F)
- Pin Descriptions-RS/EIA-232 Mode
- Pin Descriptions-RS/EIA-422/485 Mode
- Using the I/O Points with InSite™ NMS Software
- Application Example-Digital Input and Output at a Remote
MDS 05-2708A01, Rev. D MDS TransNET I&O Guide 11
Table 2 lists several types of feedlines and indicates the signal losses (in dB)
that result when using various lengths of each cable at 900 MHz and Table 3
for 2.4 GHz. The choice of cable will depend on the required length, cost
considerations, and the amount of signal loss that can be tolerated.
Antenna System Ground
Precautions should be taken to assure the antenna and its support structure are
bonded to a good earth ground system to minimize the impact of voltages
created by lightning and atmospheric charges.
CAUTION: Safety grounding systems are beyond the scope of this manual. Below you
will find some elementary advice. These are generalities; every location and
installation is unique and requires a unique safety grounding system design.
Please consider consulting a radio system engineer or other professional for
advice or ground system design. A well-designed ground system will mini-
mize risk of electrical shock to personnel and the chances of equipment
damage.
Table 2. Length vs. loss in coaxial cables at 900 MHz
Cable Type
10 Feet
(3.05 Meters)
50 Feet
(15.24 Meters)
100 Feet
(30.48 Meters)
300 Feet
(91.44 Meters)
LMR 400 0.39 dB 1.95 dB 3.9 dB Unacceptable
Loss
1/2 inch
HELIAX
0.23 dB 1.15 dB 2.29 dB 6.87 dB
7/8 inch
HELIAX
0.13 dB 0.64 dB 1.28 dB 3.84 dB
1-1/4 inch
HELIAX
0.10 dB 0.48 dB 0.95 dB 2.85 dB
1-5/8 inch
HELIAX
0.08 dB 0.40 dB 0.80 dB 2.4 dB
Table 3. Length vs. loss in coaxial cables at 2400 MHz
Cable Type
10 Feet
(3.05 Meters)
50 Feet
(15.24 Meters)
100 Feet
(30.48 Meters)
300 Feet
(91.44 Meters)
LMR-400 0.70 dB 3.50 dB 6.61 dB Unacceptable
Loss
1/2 inch
HELIAX
0.35 dB 1.73 dB 3.46 dB 17.3 dB
7/8 inch
HELIAX
0.20 dB 0.99 dB 1.97 dB 9.85 dB
1-1/4 inch
HELIAX
0.15 dB 0.73 dB 1.45 dB 7.50 dB