FUJITSU SEMICONDUCTOR DATA SHEET DS04-27801-1E ASSP For Power Management Applications (Mobile Phones) Power Management IC for GSM Mobile Phone MB3891 ■ DESCRIPTION MB3891 is intended to be used in future GSM-phones, Dual Band phones and Dual Mode phones. It contains all the necessary functions to support all Digital, Analog and RF blocks in these phones. A Charge-pump including a Logic Level Translation circuit is built in to support SIM-card (SmartCard) of both 3 and 5 Volt technology.
MB3891 ■ PIN ASSIGNMENT 33 : RESET-IN 34 : CLK-IN 35 : µP-IO 36 : RST 37 : CLK 38 : SIM-IO 39 : GND4 40 : OUT4 41 : OUT4 42 : VBAT4 43 : VBAT4 44 : CONT4 45 : SW1-OUTPUT 46 : SW1-INPUT 47 : SW3-OUTPUT 48 : SW3-INPUT (TOP VIEW) N.C. : 49 32 : GND-VSIM N.C.
MB3891 ■ PIN DESCRIPTION Pin No. Symbol I/O Descriptions 1, 2 N.C. Non connection. 3, 4 OUT3 O LDO3 output pin. 5 GND3 LDO3 ground pin. 6, 7 OUT2 O LDO2 output pin. 8, 9, 10, 11 VBAT1 Battery voltage input pin for LDO1 and LDO2. 12, 13 OUT1 O LDO1 output pin. 14 CONT1 I Power on input from keypad (Active low, Pulled up to VBAT2). 15 CONT6 I “CONT6” input from digital system µP (Active high). 16 CONT2 I External accessory supply voltage Enable (Active high).
MB3891 4 (Continued) Pin No. Symbol I/O 42, 43 VBAT4 44 CONT4 I OUT4 output voltage selection (“L”=2.8 V,“H”=2.5 V). 45 SW1-OUTPUT O Output of general purpose switch number 1 (Drain). 46 SW1-INPUT I Input of general purpose switch number 1 (Source). 47 SW3-OUTPUT O Output of general purpose switch number 3 (Drain). 48 SW3-INPUT I Input of general purpose switch number 3 (Source). 49, 50 N.C. Non connection.
MB3891 ■ BLOCK DIAGRAM VBAT2 20 VBAT1 8 9 10 11 LDO1 Over Temp Protection CONT1 14 ON 12 OUT1 13 OUT POR Main UVLO 17 XPOWERGOOD 18 DELAYCAP 19 GND1 CONT6 15 LDO2 ON OUT 6 OUT2 7 CONT2 16 46 SW1-INPUT SW1 SW1-ON 53 45 SW1-OUTPUT SW2-ON 54 52 SW2-INPUT SW2 SW3-ON 55 51 SW2-OUTPUT 48 SW3-INPUT SW3 47 SW3-OUTPUT CONT3 56 60 61 VBAT3 62 CONT5 57 LDO3 CONT4 44 ON OUT VREF 22 VFIL 23 5 GND3 VREF + VREF-AMP 42 VBAT4 43 LDO4 − OUT ON CONT4 REF-OUT 24 RESET-IN 33 RST 36 40 OUT4
MB3891 ■ ABSOLUTE MAXIMUM RATINGS Parameter Power supply voltage Symbol Conditions VBAT VCC-VSIM Rating Unit Min. Max. −0.3 7 V −0.
MB3891 ■ ELECTRICAL CHARACTERISTICS Parameter Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max.
MB3891 Parameter LDO1 (OUT1) 12, 13 −50 µA > OUT1 > −120 mA 2.000 2.100 2.200 VO Line regulation Line 12, 13 3.1 V < VBAT1 < 5.5 V 10 mV Load reguration Load 12, 13 −50 µA > OUT1 > −120 mA 30 mV Ripple rejection ∆VBAT1/∆OUT1 R.R 12, 13 f = 217 Hz 45 dB Dropout voltage VDO 12, 13 OUT1 = −120 mA 500 mV GND current at low load IGND 19 OUT1 > −1 mA 30 µA GND current at max. load IGND 19 OUT1 = −120 mA 2 mA Output noise volt.
MB3891 Parameter LDO3 (OUT3) Symbol Pin No. Output voltage VO 3, 4 −50 µA > OUT3 > −100 mA 2.700 2.800 2.900 Line regulation Line 3, 4 3.1 V < VBAT3 < 5.5 V 10 mV Load regulation Load 3, 4 −50 µA > OUT3 > −100 mA 30 mV Ripple rejection ∆VBAT3/∆OUT3 R.R 3, 4 f = 217 Hz 45 dB Dropout voltage VDO 3, 4 OUT3 = −100 mA 250 mV GND current at low load IGND 5 OUT3 > −1 mA 30 µA GND current at max.
MB3891 Parameter Output voltage VO 21 −10 µA > V-BACKUP > −250 µA Line regulation Line 21 3.1 V < VBAT2 < 5.5 V 10 mV Load regulation Load 21 −10 µA > V-BACKUP > −250 µA 30 mV Ripple rejection ∆VBAT2/ ∆V-BACKUP R.R 21 f = 217 Hz 25 dB IGND 19 V-BACKUP > −10 µA 10 µA IGND 19 V-BACKUP = −250 µA 50 µA Output noise volt. (RMS) VNOVL 21 f = 10 Hz to 1 MHz, V-BACKUP = 1 µF 500 µV Reverse current IRC 21 VBAT2 = 0 V, V-BACKUP = 3.
MB3891 Parameter Ripple rejection ∆VCC-VSIM/ ∆VSIMOUT Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. R.R 29 f = 217 Hz 30 dB IO 29 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 5 V 10 mA IO 29 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 3 V 6 mA IGND 32 VSIMOUT > −50 µA 100 µA Efficiency at max.
MB3891 (Continued) Parameter Symbol Pin No. (Ta = +25 °C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. VOH 36 RST (max.) = −20 µA VSIMOUT VOL 36 RST (max.) = 200 µA Rise time TR 36 Fall time TF VSIMOUT V 0 0.6 V RESET-IN = RST = 30 pF 400 µs 36 RESET-IN = RST = 30 pF 400 µs VOH 37 CLK (max.) = −20 µA VSIMOUT V VOL 37 CLK (max.) = 200 µA 0 0.
MB3891 ■ TYPICAL CHARACTERISTICS 400 Ta = +25 °C CONT1 = “L” CONT2 = “H” CONT3 = “H” CONT4 = OPEN CONT5 = OPEN CONT6 = OPEN VSIM-ON = “H” SIMPROG = “H” 350 300 250 200 OUT1 = No load OUT2 = No load OUT3 = No load OUT4 = No load OUT5 = No load V-BACKUP = No load VSIMOUT = No load 150 100 50 0 0 Power supply current vs. power supply voltage Power supply current IBAT (µA) Power supply current IBAT (µA) Power supply current vs.
MB3891 Ripple rejection vs. frequency (LDO1) 0 Ripple rejection R.R (dBm) Ripple rejection R.R (dBm) Ripple rejection vs. frequency (LDO1) −20 −40 Ta = +25 °C VBAT = 3.6 V OUT1 = 1 µF OUT1 = 18 Ω CONT1 = “L” CONT6 = OPEN −60 −80 −100 10 100 1k 10 k 100 k 0 Ta = +25 °C VBAT = 3.6 V OUT1 = 1 µF CONT1 = “L” CONT6 = OPEN −20 −40 −60 −80 −100 1M 10 100 Frequency f (Hz) Output voltage VOUT1 (V) Dropout voltage VDO (V) Ta = +85 °C 0.4 0.3 Ta = −20 °C 0.2 Ta = +25 °C 0.1 0.
Ta = +25°C OUT1 = No load CONT1 = “L” CONT6 = OPEN 3 2 1 VBAT 2 0 1 OUT1 0 0 4 2 VBAT 0 2 1 OUT1 t (s) Output voltage rising waveforms (LDO1) 4 2 CONT1 OUT1 2 1 0 20 40 60 0 Output voltage VOUT1 (V) Input voltage VCONT1 (V) Input voltage VCONT1 (V) t (ms) Ta = +25°C VBAT = 3.6 V OUT1 = 18 Ω CONT6 = OPEN Output voltage falling waveforms (LDO1) 10 CONT1 5 Ta = +25°C VBAT = 3.6 V OUT1 = No load CONT6 = OPEN 0 0.5 0.0 20 40 60 VBAT = 3.6 V Ta = +25°C VBAT = 3.
Waveform at rapid change of output load (LDO1) OUT1 2.0 1.5 1.0 VC 0.5 2 Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT6 = OPEN 0.0 1 0 OUT1 = −120 mA 0 A NPN Collector voltage VC (V) Output voltage VOUT1 (V) MB3891 [Measurement diagram] VBAT = 3.6 V VREF = 1.225 V (IC internal) LDO1 OUT1 120 mA 1 µF VC 4V 0V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (ms) 3.0 OUT2 Ta = +25°C VBAT = 3.6 V CONT1 = “L” CONT2 = “H” CONT6 = OPEN 2.5 2.0 1.5 1.0 3 2 0.5 1 VC 0.
MB3891 Reference voltage vs. power supply voltage Reference voltage vs. ambient temperature 1.24 Reference voltage VFIL (V) Reference voltage VFIL (V) 1.4 1.2 1.0 0.8 0.6 0.4 Ta = +25 °C VFIL = 0.1 µF 0.2 0.0 0 1 2 3 4 5 6 7 VBAT = 3.6 V 1.23 1.22 1.21 1.20 1.19 −40 −20 10000 1000 VSIMOUT = No load 100 Ta = +25 °C VBAT = 3.
MB3891 3.00 2.99 2.98 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 Output voltage vs. load current (VSIMOUT Chargepump) Ta = +25 °C VSIM-ON = “H” SIMPROG = “L” VCC-VISM = 5.5 V VCC-VISM = 3.1 V VCC-VISM = 3.6 V 0 −5 −10 −15 5.00 Output voltage VSIMOUT (V) Output voltage VSIMOUT (V) Output voltage vs. load current (VSIMOUT Chargepump) −20 Ta = +25 °C VSIM-ON = “H” SIMPROG = “H” 4.95 4.90 4.80 VCC-VISM = 3.1 V 4.75 4.65 4.60 0 Ta = +25 °C VBAT = VCC-VSIM = 3.
MB3891 Ta = +25 °C VSIM-ON = “H” SIMPROG = “L” ILOAD = −10 mA ILOAD = −1 mA 3.5 4.5 4.0 5.0 5.5 ILOAD = −10 mA ILOAD = −1 mA 3.0 3.5 4.5 4.0 5.0 5.5 Power supply voltage VCC-VSIM (V) Efficiency vs. load current (VSIMOUT Chargepump) Efficiency vs. load current (VSIMOUT Chargepump) Efficiency η (%) VCC-VSIM = 5.5 V VCC-VSIM = 3.6 V VCC-VSIM = 3.1 V −5 −10 −15 −20 0 VSIMOUT 5 4 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V SIMPROG = “H” VSIMOUT = 510 Ω 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.
5 SIMPROG 0 VSIMOUT 5 4 3 2 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIMOUT = 510 Ω VSIM-ON = “H” 1 0 Output voltage falling waveforms (VSIMOUT Chargepump) 10 5 SIMPROG 4 VSIMOUT Ta = +25 °C VBAT = VCC-SIM = 3.6 V VSIMOUT = 510 Ω VSIM-ON = “H” 2 1 VSIMOUT 0 15 20 25 30 35 40 45 Ta = +25 °C VBAT = VCC-VSIM = 3.
MB3891 Output voltage waveforms (VSIMOUT Chargepump) 40 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VSIMOUT = 510 Ω AC COUPLED −20 −40 0 2 4 6 8 10 12 14 16 18 Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV) Output voltage waveforms (VSIMOUT Chargepump) 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” VSIMOUT = 5.1 kΩ AC COUPLED −20 20 0 2 4 6 8 10 t (µs) 40 20 0 Ta = +25 °C VBAT = VCC-VSIM = 3.
MB3891 (Continued) Output voltage vs. ambient temperature (SIM Interface) Output voltage vs. ambient temperature (SIM Interface) 5.00 VBAT = VCC-VSIM = 3.6 V VSIM-ON = “H” SIMPROG = “L” 3.05 Output voltage VSIMOUT (V) Output voltage VSIMOUT (V) 3.10 3.00 2.95 2.90 2.85 2.80 −40 −20 20 0 40 60 80 100 Ambient temperature Ta ( °C) Power dissipation PD (mW) 1000 800 600 400 200 −20 0 20 40 60 80 Ambient temperature Ta ( °C) 22 4.90 4.85 4.80 4.75 4.
MB3891 ■ FUNCTIONAL DESCRIPTION (1) MAIN UVLO/BACKUP UVLO Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnormally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below the UVLO circuit threshold voltage (3.0 V/2.8 V typ.).
MB3891 (8) LDO5 The LDO5 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT5 terminal (pin 57) when the OUT1 terminal (pin 12,13) is in output state and an “H” level signal is input at the CONT5 terminal (pin 57). Power can be drawn from the OUT5 terminal for external use, up to a maximum load current of 50 mA. (9) LDO6 The LDO6 circuit uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the V-BACKUP terminal (pin 21).
MB3891 ■ OPERATION TIMING CHART Input VBAT1 to VBAT4, VCC-VSIM CONT1 CONT6 CONT5 CONT2 CONT3 SW1-ON SW2-ON (SW3-ON) VSIM-ON SIMPROG Output REF-OUT OUT6 2.
MB3891 ■ APPLICATION EXAMPLE C12 1 µF 20 VBAT2 KEYPAD C11 1 µF 8 9 10 11 VBAT1 14 CONT1 µP 15 CONT6 R1 200 kΩ OUT1 12 13 C1 1 µF 16 CONT2 XPOWERGOOD 17 53 SW1-ON DELAYCAP 18 54 SW2-ON GND1 19 C2 0.033 µF 55 SW3-ON R2 200 kΩ 56 CONT3 57 CONT5 R3 200 kΩ R4 200 kΩ R5 200 kΩ 6 7 C3 1 µF SW2-INPUT 52 44 CONT4 SW2-OUTPUT 51 22 VREF C8 0.
MB3891 ■ USAGE PRECAUTIONS • Printed circuit board ground lines should be set up with consideration for common impedance. • Take appropriate static electricity measures. • Containers for semiconductor materials should have anti-static protection or be made of conductive material. • After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers. • Work platforms, tools, and instruments should be properly grounded.
MB3891 ■ PACKAGE DIMENSION 64-pin plastic LQFP (FPT-64P-M03) Note : Pins width and pins thickness include plating thickness. 12.00±0.20(.472±.008)SQ 10.00±0.10(.394±.004)SQ 48 33 49 32 0.08(.003) Details of "A" part INDEX +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 64 17 "A" LEAD No. 1 0.50±0.08 (.020±.003) 0~8° 16 0.18 .007 +0.08 –0.03 +.003 –.001 0.08(.003) M 0.145±0.055 (.006±.002) 0.50±0.20 (.020±.008) 0.45/0.75 (.018/.030) C 0.10±0.10 (.004±.004) (Stand off) 0.25(.
MB3891 FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use.