User's Manual
Table Of Contents
- 1 Disclaimers
- 2 Safety information
- 3 Notice to user
- 4 Customer help
- 5 Quick start guide
- 6 Register the camera
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 Handling the camera
- 11.1 Charging the battery
- 11.2 Installing and removing the camera battery
- 11.3 Turning on and turning off the camera
- 11.4 Adjusting the angle of lens
- 11.5 Adjusting the infrared camera focus manually
- 11.6 Autofocusing the infrared camera
- 11.7 Continuous autofocus
- 11.8 Operating the laser distance meter
- 11.9 Measuring areas
- 11.10 Connecting external devices and storage media
- 11.11 Moving files to a computer
- 11.12 Assigning functions to the programmable buttons
- 11.13 Using the camera lamp as a flash
- 11.14 Changing camera lenses
- 11.15 Neck strap
- 11.16 Hand strap
- 12 Saving and working with images
- 13 Working with the image archive
- 14 Achieving a good image
- 15 Working with image modes
- 16 Working with measurement tools
- 17 Working with color alarms and isotherms
- 18 Annotating images
- 19 Programming the camera (time-lapse)
- 20 Recording video clips
- 21 Screening alarm
- 22 Pairing Bluetooth devices
- 23 Configuring Wi-Fi
- 24 Fetching data from external FLIR meters
- 25 Changing settings
- 26 Cleaning the camera
- 27 Technical data
- 27.1 Online field-of-view calculator
- 27.2 Note about technical data
- 27.3 Note about authoritative versions
- 27.4 FLIR T530 24°
- 27.5 FLIR T530 42°
- 27.6 FLIR T530 24° + 14°
- 27.7 FLIR T530 24° + 42°
- 27.8 FLIR T530 24° + 14° & 42°
- 27.9 FLIR T530 42° + 14°
- 27.10 FLIR T540 24°
- 27.11 FLIR T540 42°
- 27.12 FLIR T540 24° + 14°
- 27.13 FLIR T540 24° + 42°
- 27.14 FLIR T540 24° + 14° & 42°
- 27.15 FLIR T540 42° + 14°
- 28 Mechanical drawings
- 29 Application examples
- 30 About FLIR Systems
- 31 Terms, laws, and definitions
- 32 Thermographic measurement techniques
- 33 The secret to a good thermal image
- 34 About calibration
- 34.1 Introduction
- 34.2 Definition—what is calibration?
- 34.3 Camera calibration at FLIR Systems
- 34.4 The differences between a calibration performed by a user and that performed directly at FLIR Systems
- 34.5 Calibration, verification and adjustment
- 34.6 Non-uniformity correction
- 34.7 Thermal image adjustment (thermal tuning)
- 35 History of infrared technology
- 36 Theory of thermography
- 37 The measurement formula
- 38 Emissivity tables
Application examples29
29.3 Oxidized socket
29.3.1 General
Depending on the type of socket and the environment in which the socket is installed, ox-
ides may occur on the socket's contact surfaces. These oxides can lead to locally in-
creased resistance when the socket is loaded, which can be seen in an infrared image
as local temperature increase.
A socket’s construction may differ dramatically from one manufacturer to another. For
this reason, different faults in a socket can lead to the same typical appearance in an in-
frared image.
Local temperature increase can also result from improper contact between a wire and
socket, or from difference in load.
29.3.2 Figure
The image below shows a series of fuses where one fuse has a raised temperature on
the contact surfaces against the fuse holder. Because of the fuse holder’s blank metal,
the temperature increase is not visible there, while it is visible on the fuse’s ceramic
material.
#T810253; r. AA/42549/42549; en-US
173