User Manual
Table Of Contents
- 1 Disclaimers
- 2 Safety information
- 3 Notice to user
- 4 Customer help
- 5 Introduction
- 6 Quick start guide
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 Handling the camera
- 11.1 Charging the battery
- 11.2 Turning on the camera
- 11.3 Turning off the camera
- 11.4 Adjusting the viewfinder’s dioptric correction
- 11.5 Adjusting the angle of the lens
- 11.6 Adjusting the infrared camera focus manually
- 11.7 Autofocusing the infrared camera
- 11.8 Continuous autofocus
- 11.9 Operating the laser pointer
- 11.10 Using the digital zoom function
- 11.11 Assigning functions to the programmable buttons
- 11.12 Using the camera lamp as a flash
- 11.13 Changing lenses
- 11.14 Using the close-up lens
- 11.15 Changing the viewfinder eyecup
- 11.16 Calibrating the compass
- 12 Saving and working with images
- 13 Achieving a good image
- 14 Working with image modes
- 15 Working with measurement tools
- 15.1 General
- 15.2 Adding/removing measurement tools
- 15.3 Working with user presets
- 15.4 Resizing or moving a measurement tool
- 15.5 Changing object parameters
- 15.6 Displaying values in the result table and displaying a graph
- 15.7 Creating and setting up a difference calculation
- 15.8 Setting a measurement alarm
- 16 Working with color alarms and isotherms
- 17 Annotating images
- 18 Programming the camera (time lapse)
- 19 Recording video clips
- 20 Screening alarm
- 21 Pairing Bluetooth devices
- 22 Configuring Wi-Fi
- 23 Changing settings
- 24 Technical data
- 24.1 Online field-of-view calculator
- 24.2 Note about technical data
- 24.3 Note about authoritative versions
- 24.4 FLIR T1020 12°
- 24.5 FLIR T1020 28°
- 24.6 FLIR T1020 45°
- 24.7 FLIR T1030sc 12°
- 24.8 FLIR T1030sc 28°
- 24.9 FLIR T1030sc 45°
- 24.10 FLIR T1040 12°
- 24.11 FLIR T1040 28°
- 24.12 FLIR T1040 45°
- 24.13 FLIR T1050sc 12°
- 24.14 FLIR T1050sc 28°
- 24.15 FLIR T1050sc 45°
- 25 Mechanical drawings
- 26 Cleaning the camera
- 27 Application examples
- 28 About FLIR Systems
- 29 Glossary
- 30 Thermographic measurement techniques
- 31 History of infrared technology
- 32 Theory of thermography
- 33 The measurement formula
- 34 Emissivity tables
Theory of thermography
32
Figure 32.5 Wilhelm Wien (1864–1928)
The sun (approx. 6 000 K) emits yellow light, peaking at about 0.5 μm in the middle of
the visible light spectrum.
At room temperature (300 K) the peak of radiant emittance lies at 9.7 μm, in the far infra-
red, while at the temperature of liquid nitrogen (77 K) the maximum of the almost insignif-
icant amount of radiant emittance occurs at 38 μm, in the extreme infrared wavelengths.
Figure 32.6 Planckian curves plotted on semi-log scales from 100 K to 1000 K. The dotted line represents
the locus of maximum radiant emittance at each temperature as described by Wien's displacement law. 1:
Spectral radiant emittance (W/cm
2
(μm)); 2: Wavelength (μm).
32.3.3 Stefan-Boltzmann's law
By integrating Planck’s formula from λ = 0 to λ = ∞, we obtain the total radiant emittance
(W
b
) of a blackbody:
This is the Stefan-Boltzmann formula (after Josef Stefan, 1835–1893, and Ludwig Boltz-
mann, 1844–1906), which states that the total emissive power of a blackbody is propor-
tional to the fourth power of its absolute temperature. Graphically, W
b
represents the
area below the Planck curve for a particular temperature. It can be shown that the radiant
emittance in the interval λ = 0 to λ
max
is only 25% of the total, which represents about the
amount of the sun’s radiation which lies inside the visible light spectrum.
#T559954; r.28105/28105; en-US
168










