User Manual
Table Of Contents
- 1 Disclaimers
- 2 Safety information
- 3 Notice to user
- 4 Customer help
- 5 Introduction
- 6 Quick start guide
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 Handling the camera
- 11.1 Charging the battery
- 11.2 Turning on the camera
- 11.3 Turning off the camera
- 11.4 Adjusting the viewfinder’s dioptric correction
- 11.5 Adjusting the angle of the lens
- 11.6 Adjusting the infrared camera focus manually
- 11.7 Autofocusing the infrared camera
- 11.8 Continuous autofocus
- 11.9 Operating the laser pointer
- 11.10 Using the digital zoom function
- 11.11 Assigning functions to the programmable buttons
- 11.12 Using the camera lamp as a flash
- 11.13 Changing lenses
- 11.14 Using the close-up lens
- 11.15 Changing the viewfinder eyecup
- 11.16 Calibrating the compass
- 12 Saving and working with images
- 13 Achieving a good image
- 14 Working with image modes
- 15 Working with measurement tools
- 15.1 General
- 15.2 Adding/removing measurement tools
- 15.3 Working with user presets
- 15.4 Resizing or moving a measurement tool
- 15.5 Changing object parameters
- 15.6 Displaying values in the result table and displaying a graph
- 15.7 Creating and setting up a difference calculation
- 15.8 Setting a measurement alarm
- 16 Working with color alarms and isotherms
- 17 Annotating images
- 18 Programming the camera (time lapse)
- 19 Recording video clips
- 20 Screening alarm
- 21 Pairing Bluetooth devices
- 22 Configuring Wi-Fi
- 23 Changing settings
- 24 Technical data
- 24.1 Online field-of-view calculator
- 24.2 Note about technical data
- 24.3 Note about authoritative versions
- 24.4 FLIR T1020 12°
- 24.5 FLIR T1020 28°
- 24.6 FLIR T1020 45°
- 24.7 FLIR T1030sc 12°
- 24.8 FLIR T1030sc 28°
- 24.9 FLIR T1030sc 45°
- 24.10 FLIR T1040 12°
- 24.11 FLIR T1040 28°
- 24.12 FLIR T1040 45°
- 24.13 FLIR T1050sc 12°
- 24.14 FLIR T1050sc 28°
- 24.15 FLIR T1050sc 45°
- 25 Mechanical drawings
- 26 Cleaning the camera
- 27 Application examples
- 28 About FLIR Systems
- 29 Glossary
- 30 Thermographic measurement techniques
- 31 History of infrared technology
- 32 Theory of thermography
- 33 The measurement formula
- 34 Emissivity tables
Application examples
27
27.1 Moisture & water damage
27.1.1 General
It is often possible to detect moisture and water damage in a house by using an infrared
camera. This is partly because the damaged area has a different heat conduction prop-
erty and partly because it has a different thermal capacity to store heat than the sur-
rounding material.
NOTE
Many factors can come into play as to how moisture or water damage will appear in an infrared image.
For example, heating and cooling of these parts takes place at different rates depending on the material
and the time of day. For this reason, it is important that other methods are used as well to check for
moisture or water damage.
27.1.2 Figure
The image below shows extensive water damage on an external wall where the water
has penetrated the outer facing because of an incorrectly installed window ledge.
27.2 Faulty contact in socket
27.2.1 General
Depending on the type of connection a socket has, an improperly connected wire can re-
sult in local temperature increase. This temperature increase is caused by the reduced
contact area between the connection point of the incoming wire and the socket , and can
result in an electrical fire.
NOTE
A socket’s construction may differ dramatically from one manufacturer to another. For this reason, differ-
ent faults in a socket can lead to the same typical appearance in an infrared image.
Local temperature increase can also result from improper contact between wire and socket, or from dif-
ference in load.
27.2.2 Figure
The image below shows a connection of a cable to a socket where improper contact in
the connection has resulted in local temperature increase.
#T559954; r.28105/28105; en-US
147










