User's Manual
Table Of Contents
- Table of contents
- 1 Warnings & Cautions
- 2 Notice to user
- 3 Customer help
- 4 Documentation updates
- 5 Important note about this manual
- 6 Parts lists
- 7 Quick Start Guide
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 Connecting external devices and storage media
- 12 Pairing Bluetooth devices
- 13 Configuring Wi-Fi
- 14 Handling the camera
- 15 Working with images
- 16 Working with thermal fusion and picture-in-picture image modes
- 17 Working with measurement tools
- 18 Fetching data from external Extech meters
- 19 Working with isotherms
- 20 Annotating images
- 21 Recording video clips
- 22 Changing settings
- 23 Cleaning the camera
- 24 Technical data
- 25 Dimensional drawings
- 25.1 Camera dimensions, front view (1)
- 25.2 Camera dimensions, front view (2)
- 25.3 Camera dimensions, side view (1)
- 25.4 Camera dimensions, side view (2)
- 25.5 Camera dimensions, side view (3)
- 25.6 Infrared lens (30 mm/15°)
- 25.7 Infrared lens (10 mm/45°)
- 25.8 Battery (1)
- 25.9 Battery (2)
- 25.10 Battery (3)
- 25.11 Battery charger (1)
- 25.12 Battery charger (2)
- 25.13 Battery charger (3)
- 25.14 Battery charger (4)
- 26 Application examples
- 27 Introduction to building thermography
- 27.1 Disclaimer
- 27.2 Important note
- 27.3 Typical field investigations
- 27.3.1 Guidelines
- 27.3.2 About moisture detection
- 27.3.3 Moisture detection (1): Low-slope commercial roofs
- 27.3.4 Moisture detection (2): Commercial & residential façades
- 27.3.5 Moisture detection (3): Decks & balconies
- 27.3.6 Moisture detection (4): Plumbing breaks & leaks
- 27.3.7 Air infiltration
- 27.3.8 Insulation deficiencies
- 27.4 Theory of building science
- 27.4.1 General information
- 27.4.2 The effects of testing and checking
- 27.4.3 Sources of disruption in thermography
- 27.4.4 Surface temperature and air leaks
- 27.4.5 Measuring conditions & measuring season
- 27.4.6 Interpretation of infrared images
- 27.4.7 Humidity & dew point
- 27.4.8 Excerpt from Technical Note ‘Assessing thermal bridging and insulation continuity’ (UK example)
- 28 Introduction to thermographic inspections of electrical installations
- 28.1 Important note
- 28.2 General information
- 28.3 Measurement technique for thermographic inspection of electrical installations
- 28.4 Reporting
- 28.5 Different types of hot spots in electrical installations
- 28.6 Disturbance factors at thermographic inspection of electrical installations
- 28.7 Practical advice for the thermographer
- 29 About FLIR Systems
- 30 Glossary
- 31 Thermographic measurement techniques
- 32 History of infrared technology
- 33 Theory of thermography
- 34 The measurement formula
- 35 Emissivity tables
27.3 Typical field investigations
27.3.1 Guidelines
As will be noted in subsequent sections there are a number of general guidelines the
user should take heed of when carrying out building thermography inspection. This
section gives a summary of these guidelines.
27.3.1.1 General guidelines
■ The emissivity of the majority of building materials fall between 0.85 and 0.95.
Setting the emissivity value in the camera to 0.90 can be regarded as a good
starting point.
■ An infrared inspection alone should never be used as a decision point for further
actions. Always verify suspicions and findings using other methods, such as con-
struction drawings, moisture meters, humidity & temperature datalogging, tracer
gas testing etc.
■ Change level and span to thermally tune the infrared image and reveal more details.
The figure below shows the difference between a thermally untuned and a thermally
tuned infrared image.
10552103;a2
Figure 27.1 LEFT: A thermally untuned infrared image; RIGHT: A thermally tuned infrared image, after
having changed level and span.
27.3.1.2 Guidelines for moisture detection, mold detection & detection of
water damages
■ Building defects related to moisture and water damages may only show up when
heat has been applied to the surface, e.g. from the sun.
■ The presence of water changes the thermal conductivity and the thermal mass of
the building material. It may also change the surface temperature of building mate-
rial due to evaporative cooling. Thermal conductivity is a material’s ability to conduct
heat, while thermal mass is its ability to store heat.
Publ. No. T559597 Rev. a554 – ENGLISH (EN) – September 27, 2011 85
27 – Introduction to building thermography










