Installation Guide
Table Of Contents
- Extreme Routing MLX Series Hardware Installation Guide
- Preface
- About This Document
- Product Overview
- ExtremeRouting MLX Series device overview
- MLX Series router applications
- Hardware features
- MLX Series router modules
- Management modules
- Interface modules
- 2x100GbE CFP2 optics based high density module
- PBIF Recovery
- 2x100GbE CFP2 P2010 specifications
- 2x100GbE CFP2 DDR3 SDRAM memory specifications
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 Router Software
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 scalability for IPv4 and IPv6 routes
- MLX Series 2x100G XPP ILKN monitoring
- MLX Series CPU threshold monitoring
- MLX Series BR-MLX-10Gx4-M IPsec and IKEv2
- MLX Series Encryption and Decryption of IPv4 Unicast Data and Control Packets
- MLX Series IKEv2 Authentication
- MLX Series IPsec and IKEv2 configuration
- MLX Series Configuring Global IKEv2 Options
- MLX Series Configuring the IKEv2 Proposal
- MLX Series Configuring the IKEv2 Policy
- MLX Series Configuring the IKEv2 Profile
- MLX Series Configuring the IKEv2 authentication proposal
- MLX Series Configuring the IPsec Proposal
- MLX Series Configuring the IPsec Profile
- MLX Series IKEv2 Show Commands
- MLX Series IKEv2 Clear Commands
- MLX-10GX4-IPSEC-M Forwarding
- MLX Series 2x100G XPP ILKN monitoring
- 10Gx24-port interface module
- MLX 24-port 10Gbps (BR-MLX-10Gx24-DM) Interface Modules
- 8x10GE-X interface modules
- Gen-1 10Gx2 and 10Gx4 Ethernet interface modules
- BR-MLX-10GX4-X and BR-MLX-10Gx4-X-ML interface module LEDs
- Gen-1.1 4-port 10 Gbps Ethernet interface modules
- 8-port 10 Gbps M and D interface modules
- 24-port 1 Gbps Ethernet copper RJ-45 interface module
- 24-port 1 Gbps fiber interface module
- 20-port 100/1000 Ethernet interface module
- 20-port 10/100/1000 Ethernet interface module
- NI-MLX-1Gx48-T-A interface module
- BR-MLX-40Gx4-M 4-port 40GbE module
- Auto-tuning links
- Forward Error Correction mode
- Switch fabric modules
- High-speed switch fabric modules
- CFP2 to QSFP28 conversion module
- Power supplies
- Rack mounting brackets
- Cooling system for MLX Series routers
- NIBI-16-FAN-EXH-A high-speed fan assemblies
- Rack mount kit
- Supported software features
- Installing an ExtremeRouting MLX Series device
- Pre-Installation notice for the ExtremeRouting MLX chassis bundles
- Installation precautions
- Installing 2x100GbE CFP2 interface modules
- Installing BR-MLX-10Gx24-DM interface modules
- Installing an MLXe-4 router
- Installing an MLX-8 router
- Installing an MLXe-16 router
- Mounting the MLX-4, MLX-8 or MLX-16 router in a 4-post rack or EIA rack
- Installing an MLXe-32 router
- Preparing the installation site
- MLXe-32 router shipping carton contents
- Unpacking your MLXe-32 router
- Installing an MLXe-32 router in an EIA rack
- Installing modules in the MLXe-32 router
- MLXe-32 router cable management
- Accessing modules for service
- Installing power supplies in an MLXe-32 router
- Connecting AC power
- Connecting DC power
- Removing the MLXe-32 router DC power supplies
- Final steps
- Attaching a management station
- Activating the power source
- Verifying proper operation
- Using Extreme Structured Cabling Components
- Cable cinch overview
- mRJ21 procedures
- RJ-45 procedures
- Cable cinch with one group of RJ-45 cables
- Cable cinch with two groups of RJ-45 cables
- Cable cinch with three groups of RJ-45 cables
- Cable cinch with four groups of RJ-45 cables
- Cable cinch with five groups of RJ-45 cables
- Cable cinch with six groups of RJ-45 cables
- Cable cinch with seven groups of RJ-45 cables
- Cable cinch with eight groups of RJ-45 cables
- Connecting a Router to a Network Device
- Managing Routers and Modules
- Managing the device
- Disabling and re-enabling power to interface modules
- Monitoring I2C failures on management modules
- Displaying device status and temperature readings
- Displaying the Syslog configuration and static and dynamic buffers
- Router Headless State by MP Presence from LP
- Rolling Reboot
- Line Module Configuration Deletion in Interactive Boot Mode
- Managing switch fabric modules
- Managing the cooling system
- Managing interface modules
- Configuring interface module boot parameters
- Synchronizing the software image between management modules and interface modules
- Changing the boot source
- Specifying an immediate boot
- Specifying an immediate boot from the auxiliary flash slots on the management module
- Specifying an immediate boot from management module flash memory
- Specifying an immediate boot from flash memory on the interface module
- Specifying an immediate boot from a TFTP server
- Specifying an immediate interactive boot
- Configuring an automatic boot
- Configuring an automatic boot from the auxiliary flash slot on the management module
- Configuring an automatic boot from flash memory on the management module
- Configuring an automatic boot from flash memory on the interface module
- Configuring an automatic boot from a TFTP server
- Configuring an automatic interactive boot
- Changing priority of slots for interface modules
- Disabling and re-enabling power to interface modules
- Configuring interface module boot parameters
- Monitoring Link Status
- Traffic Manager XPP link monitoring
- Using alarms to collect and monitor device status
- Displaying MR2 management module memory usage
- Enabling and disabling management module CPU usage calculations
- Displaying management module CPU usage
- Removing MAC address entries
- IPv6 ND Proxy
- DRBG Health Test on IPsec LP
- Managing the device
- Maintenance and Field Replacement
- Maintenance and field replacement overview
- Hardware maintenance schedule
- Replacing a management module
- Replacing an interface module
- Replacing a switch fabric module
- Replacing a fiber-optic transceiver
- Replacing a power supply
- Replacing fan assemblies
- Hardware Specifications
- ExtremeRouting MLX Series Chassis Bundles
- Regulatory Statements
- Caution and Danger Notices
The following example demonstrates the CLI command necessary to execute the sysmon tm auto-tune command for enabling high
rate auto-tuning on TM for burst CRC.
device# sysmon tm auto-tune
The following example demonstrates the CLI command necessary to execute the no sysmon tm auto-tune command for disabling
high rate auto-tuning on TM for burst CRC.
device# no sysmon tm auto-tune
Fabric link monitoring
Fabric monitoring will normally shutdown the link which was put down by hardware during burst CRCs. With auto tuning enabled, the link
gets tuned for the
rst time when the link goes down, and if the same link goes down even after tuning, it gets powered down by fabric
link monitoring.
Fabric link monitoring is running on MP only, and relies on the built-in hardware feature of the fabric element (FE) chipset sitting on the
switch fabric. This hardware feature tracks the leaky bucket value. Initially, the leaky bucket value is set to the value of 63. For each cell
with CRC, the FE will decrement the leaky bucket by the value of 1.
When the leaky bucket value is below the DOWN threshold, the FE marks the link as DOWN. For every 256 good cells received, the FE
increment the leaky bucket value by 1 until it reaches the maximum value of 63. When the leaky bucket value passes the UP threshold,
the FE marks the link as UP. The DOWN and UP thresholds are as follows:
• DOWN threshold = 16
Leaky bucket < 16 change from UP to DOWN status.
• UP threshold = 32
Leaky bucket > 32 change from DOWN to UP status.
NOTE
In certain scenarios, the link can be alternating UP to DOWN and DOWN to UP. When this happens, there is trac loss in the
system. To avoid this scenario, software fabric link monitoring will monitor the link status every second. The link is tuned once
after the link is DOWN >= 10 times after a 20 second monitoring period. After tuning the link, if the link is DOWN again due to
CRCs, then the link is powered down. However, the link is not powered DOWN with auto-tuning enabled; instead, the link gets
tuned for the rst occurrence of DOWN.
Forward Error Correction mode
Using Forward Error Correction (FEC) mode enabled modules on an MLX Series chassis will reduce packet drops due to CRC errors.
FEC will automatically be enabled on supported line cards and fabric links in an ExtremeRouting MLX series chassis.
FEC mode is applicable for the MLX Series platforms. It will be operational on the 16Ke chassis and 32Ke chassis for the following
cards:
• 2x100G
• 24x10G
• 4x40G
• hSFMs (FE600 based SFMs)
FEC mode is applied on a per link basis. Both sides of the link (TM side and FE side) must be in the same mode. In an MLX Series
chassis, the following applies:
• All fabric facing links on the 4x40G, 2x100G and 24x10G TMs will have FEC enabled
MLX Series router modules
Extreme Routing MLX Series Hardware Installation Guide
74 53-1004203-04