Installation Guide
Table Of Contents
- Brocade NetIron MLXe Series Hardware Installation Guide
- Preface
- About This Document
- Product Overview
- Brocade router overview
- Router applications
- Hardware features
- Router modules
- Management modules
- Interface modules
- 2x100GbE CFP2 optics based high density module
- PBIF Recovery
- 2x100GbE CFP2 P2010 specifications
- 2x100GbE CFP2 DDR3 SDRAM memory specifications
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 Router Software
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 scalability for IPv4 and IPv6 routes
- 2x100G XPP ILKN monitoring
- CPU threshold monitoring
- MLXe BR-MLX-10Gx4-M IPsec and IKEv2
- Encryption and Decryption of IPv4 Unicast Data and Control Packets
- IKEv2 Authentication
- IPsec and IKEv2 configuration
- Configuring Global IKEv2 Options
- Configuring the IKEv2 Proposal
- Configuring the IKEv2 Policy
- Configuring the IKEv2 Profile
- Configuring the IKEv2 authentication proposal
- Configuring the IPsec Proposal
- Configuring the IPsec Profile
- IKEv2 Show Commands
- IKEv2 Clear Commands
- MLX-10GX4-IPSEC-M Forwarding
- 2x100G XPP ILKN monitoring
- 10Gx24-port interface module
- MLX 24-port 10Gbps (BR-MLX-10Gx24-DM) Interface Modules
- 8x10GE-X interface modules
- Gen-1 10Gx2 and 10Gx4 Ethernet interface modules
- BR-MLX-10GX4-X and BR-MLX-10Gx4-X-ML interface module LEDs
- Gen-1.1 4-port 10 Gbps Ethernet interface modules
- 8-port 10 Gbps M and D interface modules
- 24-port 1 Gbps Ethernet copper RJ-45 interface module
- 24-port 1 Gbps fiber interface module
- 20-port 100/1000 Ethernet interface module
- 20-port 10/100/1000 Ethernet interface module
- NI-MLX-1Gx48-T-A interface module
- BR-MLX-40Gx4-M 4-port 40GbE module
- Auto-tuning links
- Forward Error Correction mode
- Switch fabric modules
- High-speed switch fabric modules
- CFP2 to QSFP28 conversion module
- Power supplies
- Rack mounting brackets
- Cooling system for Brocade MLXe Series routers
- NIBI-16-FAN-EXH-A high-speed fan assemblies
- Rack mount kit
- Supported software features
- Installing a Brocade MLXe Router
- Pre-Installation notice for the Brocade MLXe chassis bundles
- Installation precautions
- Installing 2x100GbE CFP2 interface modules in Brocade MLXe Series routers
- Installing BR-MLX-10Gx24-DM interface modules in Brocade MLXe Series routers
- Installing a Brocade MLXe Series-4 router
- Installing a Brocade MLXe Series-8 router
- Installing a Brocade MLXe Series-16 router
- Mounting Brocade MLXe Series-4, -8, or -16 routers in a 4-post EIA rack
- Installing a Brocade MLXe Series-32 router
- Preparing the installation site
- Brocade MLXe Series-32 router shipping carton contents
- Unpacking your Brocade MLXe Series-32 router
- Installing a Brocade MLXe Series-32 router in an EIA rack
- Installing modules in the Brocade MLXe Series-32 router
- Brocade MLXe Series-32 cable management
- Accessing modules for service
- Installing power supplies in a Brocade MLXe Series-32 router
- Connecting AC power
- Connecting DC power
- Removing Brocade MLXe Series-32 router DC power supplies
- Final steps
- Attaching a management station
- Activating the power source
- Verifying proper operation
- Using Brocade Structured Cabling Components
- Cable cinch overview
- mRJ21 procedures
- RJ-45 procedures
- Cable cinch with one group of RJ-45 cables
- Cable cinch with two groups of RJ-45 cables
- Cable cinch with three groups of RJ-45 cables
- Cable cinch with four groups of RJ-45 cables
- Cable cinch with five groups of RJ-45 cables
- Cable cinch with six groups of RJ-45 cables
- Cable cinch with seven groups of RJ-45 cables
- Cable cinch with eight groups of RJ-45 cables
- Connecting a Router to a Network Device
- Managing Routers and Modules
- Managing the device
- Disabling and re-enabling power to interface modules
- Monitoring I2C failures on management modules
- Displaying device status and temperature readings
- Displaying the Syslog configuration and static and dynamic buffers
- Router Headless State by MP Presence from LP
- Rolling Reboot
- Line Module Configuration Deletion in Interactive Boot Mode
- Managing switch fabric modules
- Managing the cooling system
- Managing interface modules
- Configuring interface module boot parameters
- Synchronizing the software image between management modules and interface modules
- Changing the boot source
- Specifying an immediate boot
- Specifying an immediate boot from the auxiliary flash slots on the management module
- Specifying an immediate boot from management module flash memory
- Specifying an immediate boot from flash memory on the interface module
- Specifying an immediate boot from a TFTP server
- Specifying an immediate interactive boot
- Configuring an automatic boot
- Configuring an automatic boot from the auxiliary flash slot on the management module
- Configuring an automatic boot from flash memory on the management module
- Configuring an automatic boot from flash memory on the interface module
- Configuring an automatic boot from a TFTP server
- Configuring an automatic interactive boot
- Changing priority of slots for interface modules
- Disabling and re-enabling power to interface modules
- Configuring interface module boot parameters
- Monitoring Link Status
- Traffic Manager XPP link monitoring
- Using alarms to collect and monitor device status
- Displaying MR2 management module memory usage
- Enabling and disabling management module CPU usage calculations
- Displaying management module CPU usage
- Removing MAC address entries
- IPv6 ND Proxy
- DRBG Health Test on IPsec LP
- Managing the device
- Maintenance and Field Replacement
- Maintenance and field replacement overview
- Hardware maintenance schedule
- Replacing a management module
- Replacing an interface module
- Replacing a switch fabric module
- Replacing a fiber-optic transceiver
- Replacing a power supply
- Replacing fan assemblies
- Hardware Specifications
- Brocade MLXe Chassis Bundles
- Regulatory Statements
- Caution and Danger Notices
IKEv2 Option Description
Protected
<vrf>
The VRF traffic to protect using IPsec. If the tunnel VRF and protected VRF does not match, the IKE session is
not initiated. Change to this parameter is not allowed if the profile is already in use by a tunnel. (Default value is any
VRF.)
Configuring the IKEv2 authentication proposal
IKEV2 peers must be authenticated for their identity. Local IKE connections need to send a local-identity to peers for authentication. All
required authentication parameters for local and remote peers can be configured inside this authentication template. This authentication
template can be used with multiple IKE profiles.
An authentication proposal should be mapped to an IKE Profile. Once a suitable IKE profile is selected for an incoming IKE session, the
authentication proposal will be used the verify the AUTH data.
If a received authentication method is not specified in this proposal, the authentication is assumed to have failed, and necessary action is
taken accordingly.
IKEv2 Option Description
Ikev2 auth-proposal
<auth-name>
Defines an IKEv2 authentication name and enters authentication configuration mode.
method { local {ecdsa384 | pre-
shared} | remote {ecdsa384 | pre-
shared} }
Authentication method. Allowed values are pre_shared_key, rsa_signature, dss_signature. Multiple methods may
be specified for remote authentication (not applicable for first release). Only one method is allowed for local
authentication. Only x509v3certificate with digital signature using ecdsa384 will be supported for first release.
pki trustpoint
<trustpoint-Name>
[sign | verify]
(Optional) Specifies the certificate authority (trustpoint) for use for signing and authentication of Auth payload.
Different trustpoints can be used for signing and verification of Auth Payload.
sign — Use the certificate from the trustpoint to sign the AUTH payload sent to the peer.
verify — Use the certificate from the trustpoint to verify the AUTH payload received from the peer.
NOTE
Only ipv4 domain will be supported in first release. Ipv6 domains will be considered in future release.
pre-shared-key
<key>
If the authentication method is used as pre-shared, then the pre-shared key should be configured.
NOTE
There is no default value for this parameter.
Configuring the IPsec Proposal
Configure the IPsec proposal to specify the IPsec encryption parameters. The IPsec proposal contains the ESP and AH method to be
used. This will be linked to an IPsec policy.
The default proposal ipsec-default-proposal is defined at IPsec initialization time with the following parameters:
∙ Authentication and encryption: esp- aes-gcm-256
∙ transform esp
∙ encapsulation-mode tunnel
IKEv2 Option Description
ipsec proposal
<name>
Defines an IPsec Security Proposal Name and enters IPsec proposal configuration mode.
encapsulation-mode {transport |
tunnel}
The packet encapsulation mode is configured. By default, the security protocol uses the tunnel mode to
encapsulate IP packets.
NOTE
In the first release, only tunnel mode will be supported.
Product Overview
Brocade NetIron MLXe Series Hardware Installation Guide
53-1004203-03 51