Installation Guide
Table Of Contents
- Brocade NetIron MLXe Series Hardware Installation Guide
- Preface
- About This Document
- Product Overview
- Brocade router overview
- Router applications
- Hardware features
- Router modules
- Management modules
- Interface modules
- 2x100GbE CFP2 optics based high density module
- PBIF Recovery
- 2x100GbE CFP2 P2010 specifications
- 2x100GbE CFP2 DDR3 SDRAM memory specifications
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 Router Software
- BR-MLX-10GX20-X2 and BR-MLX-100GX2-CFP2-X2 scalability for IPv4 and IPv6 routes
- 2x100G XPP ILKN monitoring
- CPU threshold monitoring
- MLXe BR-MLX-10Gx4-M IPsec and IKEv2
- Encryption and Decryption of IPv4 Unicast Data and Control Packets
- IKEv2 Authentication
- IPsec and IKEv2 configuration
- Configuring Global IKEv2 Options
- Configuring the IKEv2 Proposal
- Configuring the IKEv2 Policy
- Configuring the IKEv2 Profile
- Configuring the IKEv2 authentication proposal
- Configuring the IPsec Proposal
- Configuring the IPsec Profile
- IKEv2 Show Commands
- IKEv2 Clear Commands
- MLX-10GX4-IPSEC-M Forwarding
- 2x100G XPP ILKN monitoring
- 10Gx24-port interface module
- MLX 24-port 10Gbps (BR-MLX-10Gx24-DM) Interface Modules
- 8x10GE-X interface modules
- Gen-1 10Gx2 and 10Gx4 Ethernet interface modules
- BR-MLX-10GX4-X and BR-MLX-10Gx4-X-ML interface module LEDs
- Gen-1.1 4-port 10 Gbps Ethernet interface modules
- 8-port 10 Gbps M and D interface modules
- 24-port 1 Gbps Ethernet copper RJ-45 interface module
- 24-port 1 Gbps fiber interface module
- 20-port 100/1000 Ethernet interface module
- 20-port 10/100/1000 Ethernet interface module
- NI-MLX-1Gx48-T-A interface module
- BR-MLX-40Gx4-M 4-port 40GbE module
- Auto-tuning links
- Forward Error Correction mode
- Switch fabric modules
- High-speed switch fabric modules
- CFP2 to QSFP28 conversion module
- Power supplies
- Rack mounting brackets
- Cooling system for Brocade MLXe Series routers
- NIBI-16-FAN-EXH-A high-speed fan assemblies
- Rack mount kit
- Supported software features
- Installing a Brocade MLXe Router
- Pre-Installation notice for the Brocade MLXe chassis bundles
- Installation precautions
- Installing 2x100GbE CFP2 interface modules in Brocade MLXe Series routers
- Installing BR-MLX-10Gx24-DM interface modules in Brocade MLXe Series routers
- Installing a Brocade MLXe Series-4 router
- Installing a Brocade MLXe Series-8 router
- Installing a Brocade MLXe Series-16 router
- Mounting Brocade MLXe Series-4, -8, or -16 routers in a 4-post EIA rack
- Installing a Brocade MLXe Series-32 router
- Preparing the installation site
- Brocade MLXe Series-32 router shipping carton contents
- Unpacking your Brocade MLXe Series-32 router
- Installing a Brocade MLXe Series-32 router in an EIA rack
- Installing modules in the Brocade MLXe Series-32 router
- Brocade MLXe Series-32 cable management
- Accessing modules for service
- Installing power supplies in a Brocade MLXe Series-32 router
- Connecting AC power
- Connecting DC power
- Removing Brocade MLXe Series-32 router DC power supplies
- Final steps
- Attaching a management station
- Activating the power source
- Verifying proper operation
- Using Brocade Structured Cabling Components
- Cable cinch overview
- mRJ21 procedures
- RJ-45 procedures
- Cable cinch with one group of RJ-45 cables
- Cable cinch with two groups of RJ-45 cables
- Cable cinch with three groups of RJ-45 cables
- Cable cinch with four groups of RJ-45 cables
- Cable cinch with five groups of RJ-45 cables
- Cable cinch with six groups of RJ-45 cables
- Cable cinch with seven groups of RJ-45 cables
- Cable cinch with eight groups of RJ-45 cables
- Connecting a Router to a Network Device
- Managing Routers and Modules
- Managing the device
- Disabling and re-enabling power to interface modules
- Monitoring I2C failures on management modules
- Displaying device status and temperature readings
- Displaying the Syslog configuration and static and dynamic buffers
- Router Headless State by MP Presence from LP
- Rolling Reboot
- Line Module Configuration Deletion in Interactive Boot Mode
- Managing switch fabric modules
- Managing the cooling system
- Managing interface modules
- Configuring interface module boot parameters
- Synchronizing the software image between management modules and interface modules
- Changing the boot source
- Specifying an immediate boot
- Specifying an immediate boot from the auxiliary flash slots on the management module
- Specifying an immediate boot from management module flash memory
- Specifying an immediate boot from flash memory on the interface module
- Specifying an immediate boot from a TFTP server
- Specifying an immediate interactive boot
- Configuring an automatic boot
- Configuring an automatic boot from the auxiliary flash slot on the management module
- Configuring an automatic boot from flash memory on the management module
- Configuring an automatic boot from flash memory on the interface module
- Configuring an automatic boot from a TFTP server
- Configuring an automatic interactive boot
- Changing priority of slots for interface modules
- Disabling and re-enabling power to interface modules
- Configuring interface module boot parameters
- Monitoring Link Status
- Traffic Manager XPP link monitoring
- Using alarms to collect and monitor device status
- Displaying MR2 management module memory usage
- Enabling and disabling management module CPU usage calculations
- Displaying management module CPU usage
- Removing MAC address entries
- IPv6 ND Proxy
- DRBG Health Test on IPsec LP
- Managing the device
- Maintenance and Field Replacement
- Maintenance and field replacement overview
- Hardware maintenance schedule
- Replacing a management module
- Replacing an interface module
- Replacing a switch fabric module
- Replacing a fiber-optic transceiver
- Replacing a power supply
- Replacing fan assemblies
- Hardware Specifications
- Brocade MLXe Chassis Bundles
- Regulatory Statements
- Caution and Danger Notices
Encryption and Decryption of IPv4 Unicast Data and Control Packets
Features include for encryption and decryption of IPv4 unicast data and control packets include IKEv2 on MP; IPSec FPGA protocol;
IKEv2 protocol support; and PKI checks for certificate presence.
Major enhancements to support encryption and decryption of IPv4 unicast data and control packets transmitted or received from
external networks include:
∙ IPSec FPGA protocol using a new 4x10G/1G and 4x1G IPSec line card, developed to provide hardware based data encryption
and decryption at line rate of 44GBe. This card has free scale P2010 CPU with Security Engine 3.1x.
∙ IKEv2 protocol support to setup and manage secure tunnels across the external network.
∙ PKI support for authentication of endpoints of tunnel using digital certificates.
NOTE
The PKI module needs to run over HTTP, so it will be running as a separate task on MP.
IKE or another module should not store the PKI certificates for later reference. Whenever needed, the PKI module
should be queried with the certificate DN or Subject's alternate name.
∙ Manual PKI is supported, and OCSP and SCEP are not supported (for NetIron Release 5.8.00).
IKEv2 Authentication
When IKEv2 authentication is configured and the method (remote or local) is ECDSA, the CA certificates are retrieved and downloaded
to LPs where IKE will store these certificates. This is done even if the peer is not up, such as during peer init. This data is required or SA-
INIT cannot be completed.
NOTE
The new PKI feature in NI Release 5.8.00 will only be used for setting up the IKEv2 session.
When a peer is created and auth method is ECDSA IKE checks its database to ascertain if the CA and its self certificate are available.
The following certificate payload encoding is supported:
Certificate Type Value
X.509 Certificate – Signature 4
Hash and URL of X.509 certificate 12
OCSP content 14
During the IKEv2 exchange, when two peers are establishing a tunnel, each peer will receive a certificate from the other IKE peer. In the
IKE, the certificates can be sent in two ways: Inline certificate and HTTP and URL format.
NOTE
IKE or another module should not store the PKI certificates for later reference. Whenever needed, the PKI module should be
queried with the certificate DN or Subject alternate name.
IPsec and IKEv2 configuration
Create a VTI interface by creating a tunnel interface and setting the mode of the tunnel to IPsec IPv4.
To create a tunnel interface and set the mode of the tunnel to IPsec IPv4, perform the following task.
1. Create a VTI interface by completing the following steps:
a) Create a VTI interface by entering the interface tunnel
x
command, where
x
is the tunnel number.
Product Overview
Brocade NetIron MLXe Series Hardware Installation Guide
46 53-1004203-03