User's Manual
Table Of Contents
- EX-r Series GigE
- Digital Microwave Radios
- Installation and Management Guide
- Legal Notice
- Open-Source License Information
- Table of Contents
- List of Figures
- List of Tables
- About this Document
- Introduction
- Pre-installation Tasks
- Link Engineering and Site Planning
- Familiarization with the EX-r Series GigE Radios
- Initial Configuration and Back-to-Back Bench Test
- Time Division Duplex (TDD) Factors
- Link Orientation and Synchronization
- Radio A/B Configuration
- Radio Synchronization
- Offset Timing
- Virtual Local Area Network (VLAN)
- Simple Network Management Protocol (SNMP)
- System Installation and Initiation Process
- Installation
- Configuration and Management
- Telnet into the Command Line Interface (CLI)
- Telnet
- Exalt Graphical User Interface (GUI)
- Quick Start
- Navigating the GUI
- Radio Information Page
- Administration Settings Page
- Simple Network Management Protocol (SNMP) Configuration
- File Transfer Page
- File Activation Page
- System Configuration Page
- Ethernet Interface Configuration Page
- VLAN Configuration Page
- T1/E1 Configuration Pages
- GPS Information Page
- Alarms Page
- Performance Page
- Event Log Page
- Diagnostic Charts Page
- Spectrum Analyzer Page
- Reboot Page
- Manual Page
- Specifications
- 201872-003Interface Connections
- Antennas
- Troubleshooting
- Back-to-back Bench Testing
- General Compliance and Safety
- Dynamic Frequency Selection
- Safety Notices
- Regulatory Notices
- Regulatory Compliance
- Regulatory Domain Keys
- EIRP Limits for the United States and Canada
- EIRP Limits for Australia
- EIRP Limits for the European Union and ITU Countries
- Declaration of Conformity to the R&TTE Directive 1999/5/EC
- Copyright Notices
- END USER AGREEMENT
- Index
Exalt Installation and Management Guide
EX-r Series GigE Digital Microwave Radios
29 201872-003
2015-10-23
Transmission Line from Antenna to Radio (EX-4.5r-c GigE and
EX-5r-c GigE)
Most installations use a very short length of coaxial transmission line for the connection between the
antenna and the radio device. Coaxial transmission line can either have a solid or braided shield. Solid-
shield cables are more resistant to external signal coupling and interference, but are generally stiffer
than braided cables. Consult the path or site engineer(s) to ensure that the proper materials are chosen
for the installation and that all factors were considered.
Generally, the larger the diameter of the transmission line, the lower the loss. So for longer runs of
transmission line, larger diameter cables are highly advised. However, at every frequency, there is a
maximum diameter cable that supports the operating frequency. Verify the specifications. This should
is determined in the path and site planning process.
Table 4 lists representative samples of transmission line types recommended for the Exalt Digital
Microwave Radio.
It is critical that the transmission line and antenna be capable of supporting the same type of connector,
or easily adapted. It can be important to minimize the number of connectors and adapters, and it is
ideal that they match directly without adaptation. In most cases, transmission line allows for N-type
male connectors and antennas have N-type female connectors.
If possible, connect the primary transmission line directly to the antenna. It is desired to have the
fewest possible pieces of transmission line in the system, to minimize losses and points of failure from
connectors. The antenna can typically accommodate a direct connection if planned in advance. Use a
90º adapter for the connection to the antenna, if necessary, but confirm that all connectors and
transmission lines are properly specified for the operating frequency with minimum loss, proper
impedance (50 Ohm) and proper VSWR characteristics.
Transmission line connector termination is a critical element of the installation. Many ‘factory built’
RF transmission lines do not provide the proper characteristics for proper transmission, despite their
published specifications, often due to the fully or semi-automated process of factory termination,
which may not have considered the frequency of your system. When buying pre-terminated
transmission line, it is strongly advised to obtain the documentation of test measurements on the
connected transmission line showing that the loss characteristics and VSWR are within the specified
limits specifically at your operating frequency. In addition to factory-built transmission line, self-
terminated transmission line can suffer the same issues.
Table 4 Recommended transmission line
Manufacturer Type Description Loss at 5.3GHz Loss at 5.8GHz
Andrew LDF4-50 1/2-inch solid shield 5.7dB/100' 6.0dB/100'
Andrew LDF4.5-50 5/8-inch solid shield 4.4dB/100' 4.7dB/100'
Times LMR-600 1/2-inch braided shield 6.9dB/100' 7.3dB/100'
Times LMR-900 5/8-inch braided shield 4.6dB/100' 4.9dB/100'
RFS LCF12-50J 1/2-inch solid shield 5.6dB/100' 5.9dB/100'
RFS LCF12-58J 5/8-inch solid shield 4.5dB/100' 4.8dB/100'