Web Management Guide-R02
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Configuring CPU Guard
- Displaying Memory Utilization
- Resetting the System
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA (Authentication, Authorization and Accounting)
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- DHCP Snooping
- DHCPv6 Snooping
- ND Snooping
- IPv4 Source Guard
- IPv6 Source Guard
- ARP Inspection
- Application Filter
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting Community Access Strings
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Setting a Time Range
- Ethernet Ring Protection Switching
- MLAG Configuration
- OAM Configuration
- LBD Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Packets on an Interface
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Configuring MLD Snooping and Query Parameters
- Setting Immediate Leave Status for MLD Snooping per Interface
- Specifying Static Interfaces for an IPv6 Multicast Router
- Assigning Interfaces to IPv6 Multicast Services
- Filtering MLD Query Packets on an Interface
- Showing MLD Snooping Groups and Source List
- Displaying MLD Snooping Statistics
- Filtering and Throttling MLD Groups
- Multicast VLAN Registration for IPv4
- IP Tools
- IP Configuration
- General IP Routing
- IP Services
- Appendices
Chapter 10
| Quality of Service
Creating QoS Policies
– 266 –
Policing is based on a token bucket, where bucket depth (that is, the maximum
burst before the bucket overflows) is specified by the “burst” field (BC), and the
average rate tokens are removed from the bucket is specified by the “rate” option
(CIR). Action may be taken for traffic conforming to the maximum throughput, or
exceeding the maximum throughput.
srTCM Police Meter – Defines an enforcer for classified traffic based on a single rate
three color meter scheme defined in RFC 2697. This metering policy monitors a
traffic stream and processes its packets according to the committed information
rate (CIR, or maximum throughput), committed burst size (BC, or burst rate), and
excess burst size (BE). Action may taken for traffic conforming to the maximum
throughput, exceeding the maximum throughput, or exceeding the excess burst
size.
◆ The PHB label is composed of five bits, three bits for per-hop behavior, and two
bits for the color scheme used to control queue congestion. In addition to the
actions defined by this command to transmit, remark the DSCP service value, or
drop a packet, the switch will also mark the two color bits used to set the drop
precedence of a packet. A packet is marked green if it doesn't exceed the
committed information rate and committed burst size, yellow if it does exceed
the committed information rate and committed burst size, but not the excess
burst size, and red otherwise.
◆ The meter operates in one of two modes. In the color-blind mode, the meter
assumes that the packet stream is uncolored. In color-aware mode the meter
assumes that some preceding entity has pre-colored the incoming packet
stream so that each packet is either green, yellow, or red. The marker (re)colors
an IP packet according to the results of the meter. The color is coded in the DS
field [RFC 2474] of the packet.
◆ The behavior of the meter is specified in terms of its mode and two token
buckets, C and E, which both share the common rate CIR. The maximum size of
the token bucket C is BC and the maximum size of the token bucket E is BE.
The token buckets C and E are initially full, that is, the token count Tc(0) = BC
and the token count Te(0) = BE. Thereafter, the token counts Tc and Te are
updated CIR times per second as follows:
■
If Tc is less than BC, Tc is incremented by one, else
■
if Te is less then BE, Te is incremented by one, else
■
neither Tc nor Te is incremented.
When a packet of size B bytes arrives at time t, the following happens if srTCM is
configured to operate in Color-Blind mode:
■
If Tc(t)-B0, the packet is green and Tc is decremented by B down to the
minimum value of 0, else
■
if Te(t)-B0, the packets is yellow and Te is decremented by B down to the
minimum value of 0,