Web Management Guide-R02
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Configuring CPU Guard
- Displaying Memory Utilization
- Resetting the System
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA (Authentication, Authorization and Accounting)
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- DHCP Snooping
- DHCPv6 Snooping
- ND Snooping
- IPv4 Source Guard
- IPv6 Source Guard
- ARP Inspection
- Application Filter
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting Community Access Strings
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Setting a Time Range
- Ethernet Ring Protection Switching
- MLAG Configuration
- OAM Configuration
- LBD Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Packets on an Interface
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Configuring MLD Snooping and Query Parameters
- Setting Immediate Leave Status for MLD Snooping per Interface
- Specifying Static Interfaces for an IPv6 Multicast Router
- Assigning Interfaces to IPv6 Multicast Services
- Filtering MLD Query Packets on an Interface
- Showing MLD Snooping Groups and Source List
- Displaying MLD Snooping Statistics
- Filtering and Throttling MLD Groups
- Multicast VLAN Registration for IPv4
- IP Tools
- IP Configuration
- General IP Routing
- IP Services
- Appendices
– 627 –
17 General IP Routing
This chapter provides information on network functions including:
◆ Static Routes – Configures static routes to other network segments.
◆ Routing Table – Displays routing entries learned through statically configured
entries.
◆ Equal-cost Multipath Routing – Configures the maximum number of equal-cost
paths that can transmit traffic to the same destination
Overview
This switch supports IP routing and routing path management via static routing
definitions. When IP routing is functioning, this switch acts as a wire-speed router,
passing traffic between VLANs with different IP interfaces, and routing traffic to
external IP networks. However, when the switch is first booted, default routing can
only forward traffic between local IP interfaces. As with all traditional routers, static
routing must first be configured to work.
Initial Configuration By default, all ports belong to the same VLAN and the switch provides only Layer 2
functionality. To segment the attached network, first create VLANs for each unique
user group or application traffic (page 163), assign all ports that belong to the same
group to these VLANs (page 165), and then assign an IP interface to each VLAN
(page 601 or page 605). By separating the network into different VLANs, it can be
partitioned into subnetworks that are disconnected at Layer 2. Network traffic
within the same subnet is still switched using Layer 2 switching. And the VLANs can
now be interconnected (as required) with Layer 3 switching.
Each VLAN represents a virtual interface to Layer 3. You just need to provide the
network address for each virtual interface, and the traffic between different
subnetworks will be routed by Layer 3 switching.