ECS4510 Series Web Management Guide-R03
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Displaying Memory Utilization
- Stacking
- Resetting the System
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA (Authentication, Authorization and Accounting)
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Setting a Time Range
- Showing TCAM Utilization
- Setting the ACL Name and Type
- Configuring a Standard IPv4 ACL
- Configuring an Extended IPv4 ACL
- Configuring a Standard IPv6 ACL
- Configuring an Extended IPv6 ACL
- Configuring a MAC ACL
- Configuring an ARP ACL
- Binding a Port to an Access Control List
- Configuring ACL Mirroring
- Showing ACL Hardware Counters
- ARP Inspection
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- IPv4 Source Guard
- IPv6 Source Guard
- DHCP Snooping
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Power over Ethernet
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Setting Community Access Strings
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Switch Clustering
- Ethernet Ring Protection Switching
- Connectivity Fault Management
- Configuring Global Settings for CFM
- Configuring Interfaces for CFM
- Configuring CFM Maintenance Domains
- Configuring CFM Maintenance Associations
- Configuring Maintenance End Points
- Configuring Remote Maintenance End Points
- Transmitting Link Trace Messages
- Transmitting Loop Back Messages
- Transmitting Delay-Measure Requests
- Displaying Local MEPs
- Displaying Details for Local MEPs
- Displaying Local MIPs
- Displaying Remote MEPs
- Displaying Details for Remote MEPs
- Displaying the Link Trace Cache
- Displaying Fault Notification Settings
- Displaying Continuity Check Errors
- OAM Configuration
- UDLD Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Query Packets and Multicast Data
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Multicast VLAN Registration for IPv4
- Multicast VLAN Registration for IPv6
- IP Configuration
- IP Services
- General IP Routing
- Unicast Routing
- Overview
- Configuring the Routing Information Protocol
- Configuring General Protocol Settings
- Clearing Entries from the Routing Table
- Specifying Network Interfaces
- Specifying Passive Interfaces
- Specifying Static Neighbors
- Configuring Route Redistribution
- Specifying an Administrative Distance
- Configuring Network Interfaces for RIP
- Displaying RIP Interface Settings
- Displaying Peer Router Information
- Resetting RIP Statistics
- Appendices
- Glossary
- Index
Chapter 1
| Introduction
Description of Software Features
– 41 –
allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained
in each packet. Based on network policies, different kinds of traffic can be marked
for different kinds of forwarding.
Ethernet Ring
Protection Switching
ERPS can be used to increase the availability and robustness of Ethernet rings, such
as those used in Metropolitan Area Networks (MAN). ERPS provides Layer 2 loop
avoidance and fast reconvergence in Layer 2 ring topologies, supporting up to 255
nodes in the ring structure. It can also function with IEEE 802.1ag to support link
monitoring when non-participating devices exist within the Ethernet ring.
IP Routing The switch provides Layer 3 IP routing. To maintain a high rate of throughput, the
switch forwards all traffic passing within the same segment, and routes only traffic
that passes between different subnetworks. The wire-speed routing provided by
this switch lets you easily link network segments or VLANs together without having
to deal with the bottlenecks or configuration hassles normally associated with
conventional routers.
Routing for unicast traffic is supported with static routing, and Routing Information
Protocol (RIP).
Static Routing – Traffic is automatically routed between any IP interfaces
configured on the switch. Routing to statically configured hosts or subnet
addresses is provided based on next-hop entries specified in the static routing
table.
RIP – This protocol uses a distance-vector approach to routing. Routes are
determined on the basis of minimizing the distance vector, or hop count, which
serves as a rough estimate of transmission cost.
Address Resolution
Protocol
The switch uses ARP and Proxy ARP to convert between IP addresses and MAC
(hardware) addresses. This switch supports conventional ARP, which locates the
MAC address corresponding to a given IP address. This allows the switch to use IP
addresses for routing decisions and the corresponding MAC addresses to forward
packets from one hop to the next. Either static or dynamic entries can be
configured in the ARP cache.
Proxy ARP allows hosts that do not support routing to determine the MAC address
of a device on another network or subnet. When a host sends an ARP request for a
remote network, the switch checks to see if it has the best route. If it does, it sends
its own MAC address to the host. The host then sends traffic for the remote
destination via the switch, which uses its own routing table to reach the destination
on the other network.
Operation,
Administration,
and Maintenance
The switch provides OAM remote management tools required to monitor and
maintain the links to subscriber CPEs (Customer Premise Equipment). This section