Web Management Guide-R04
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Configuring CPU Guard
- Displaying Memory Utilization
- Resetting the System
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Layer 2 Queue Settings
- Layer 3/4 Priority Settings
- Setting Priority Processing to IP Precedence/DSCP or CoS
- Mapping Ingress DSCP Values to Internal DSCP Values
- Mapping CoS Priorities to Internal DSCP Values
- Mapping Internal DSCP Values to Egress CoS Values
- Mapping IP Precedence Values to Internal DSCP Values
- Mapping IP Port Priority to Internal DSCP Values
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA Authentication, Authorization and Accounting
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- DHCPv4 Snooping
- DHCPv6 Snooping
- IPv4 Source Guard
- IPv6 Source Guard
- ARP Inspection
- Application Filter
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting Community Access Strings
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Switch Clustering
- Setting a Time Range
- Ethernet Ring Protection Switching
- OAM Configuration
- Connectivity Fault Management
- Configuring Global Settings for CFM
- Configuring Interfaces for CFM
- Configuring CFM Maintenance Domains
- Configuring CFM Maintenance Associations
- Configuring Maintenance End Points
- Configuring Remote Maintenance End Points
- Transmitting Link Trace Messages
- Transmitting Loop Back Messages
- Transmitting Delay-Measure Requests
- Displaying Local MEPs
- Displaying Details for Local MEPs
- Displaying Local MIPs
- Displaying Remote MEPs
- Displaying Details for Remote MEPs
- Displaying the Link Trace Cache
- Displaying Fault Notification Settings
- Displaying Continuity Check Errors
- OAM Configuration
- UDLD Configuration
- LBD Configuration
- Smart Pair Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Query Packets and Multicast Data
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Multicast VLAN Registration for IPv4
- Multicast VLAN Registration for IPv6
- Basic IP Functions
- IP Configuration
- General IP Routing
- IP Services
- Appendices
- Glossary
Chapter 13
| Basic Administration Protocols
Ethernet Ring Protection Switching
– 496 –
The Ethernet Ring Node where the Manual Switch was cleared
continuously transmits the R-APS (NR) message on both ring ports,
informing that no request is present at this ring node. The ring nodes
stop transmitting R-APS (NR) messages when they accept an RAPS (NR,
RB) message, or when another higher priority request is received.
If the ring node where the Manual Switch was cleared receives an
R-APS (NR) message with a Node ID higher than its own Node ID, it
unblocks any ring port which does not have an SF condition and stops
transmitting R-APS (NR) message on both ring ports.
■
Recovery with revertive mode is handled as follows:
a. The RPL Owner Node, upon reception of an R-APS (NR)
message and in the absence of any other higher priority
request, starts the WTB timer and waits for it to expire. While
the WTB timer is running, any latent R-APS (MS) message is
ignored due to the higher priority of the WTB running signal.
b. When the WTB timer expires, it generates the WTB expire
signal. The RPL Owner Node, upon reception of this signal,
initiates reversion by blocking the traffic channel on the RPL,
transmitting an R-APS (NR, RB) message over both ring ports,
informing the ring that the RPL is blocked, and flushes its FDB.
c. The acceptance of the R-APS (NR, RB) message causes all ring
nodes to unblock any blocked non-RPL that does not have an
SF condition. If it is an R-APS (NR, RB) message without a DNF
indication, all Ethernet Ring Nodes flush their FDB. This action
unblocks the ring port which was blocked as a result of an
operator command.
■
Recovery with non-revertive mode is handled as follows:
a. The RPL Owner Node, upon reception of an R-APS (NR)
message and in the absence of any other higher priority
request does not perform any action.
b. Then, after the operator issues the Clear command (Configure
Operation page) at the RPL Owner Node, this ring node blocks
the ring port attached to the RPL, transmits an R-APS (NR, RB)
message over both ring ports, informing the ring that the RPL is
blocked, and flushes its FDB.
c. The acceptance of the R-APS (NR, RB) message triggers all ring
nodes to unblock any blocked non-RPL which does not have an
SF condition. If it is an R-APS (NR, RB) message without a DNF
indication, all ring nodes flush their FDB. This action unblocks
the ring port which was blocked as result of an operator
command.