Web Management Guide-R04
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Configuring CPU Guard
- Displaying Memory Utilization
- Resetting the System
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Layer 2 Queue Settings
- Layer 3/4 Priority Settings
- Setting Priority Processing to IP Precedence/DSCP or CoS
- Mapping Ingress DSCP Values to Internal DSCP Values
- Mapping CoS Priorities to Internal DSCP Values
- Mapping Internal DSCP Values to Egress CoS Values
- Mapping IP Precedence Values to Internal DSCP Values
- Mapping IP Port Priority to Internal DSCP Values
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA Authentication, Authorization and Accounting
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- DHCPv4 Snooping
- DHCPv6 Snooping
- IPv4 Source Guard
- IPv6 Source Guard
- ARP Inspection
- Application Filter
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting Community Access Strings
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Switch Clustering
- Setting a Time Range
- Ethernet Ring Protection Switching
- OAM Configuration
- Connectivity Fault Management
- Configuring Global Settings for CFM
- Configuring Interfaces for CFM
- Configuring CFM Maintenance Domains
- Configuring CFM Maintenance Associations
- Configuring Maintenance End Points
- Configuring Remote Maintenance End Points
- Transmitting Link Trace Messages
- Transmitting Loop Back Messages
- Transmitting Delay-Measure Requests
- Displaying Local MEPs
- Displaying Details for Local MEPs
- Displaying Local MIPs
- Displaying Remote MEPs
- Displaying Details for Remote MEPs
- Displaying the Link Trace Cache
- Displaying Fault Notification Settings
- Displaying Continuity Check Errors
- OAM Configuration
- UDLD Configuration
- LBD Configuration
- Smart Pair Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Query Packets and Multicast Data
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Multicast VLAN Registration for IPv4
- Multicast VLAN Registration for IPv6
- Basic IP Functions
- IP Configuration
- General IP Routing
- IP Services
- Appendices
- Glossary
Chapter 13
| Basic Administration Protocols
Ethernet Ring Protection Switching
– 493 –
■
Only one RPL owner can be configured on a ring. If the switch is set as
the RPL owner for an ERPS domain, the west ring port is set as one end
of the RPL. If the switch is set as the RPL neighbor for an ERPS domain,
the east ring port is set as the other end of the RPL.
■
The east and west connections to the ring must be specified for all ring
nodes. When this switch is configured as the RPL neighbor, the east
ring port is set as being connected to the RPL.
■
Note that is not mandatory to declare a RPL neighbor.
◆ Revertive – Sets the method of recovery to Idle State through revertive or non-
revertive mode. (Default: Enabled)
■
Revertive behavior allows the switch to automatically return the RPL from
Protection state to Idle state through the exchange of protocol messages.
Non-revertive behavior for Protection, Forced Switch (FS), and Manual
Switch (MS) states are basically the same. Non-revertive behavior requires
the RPL to be restored from Protection state to Idle state using the Clear
command (Configure Operation page).
■
Recovery for Protection Switching – A ring node that has one or more ring
ports in an SF (Signal Fail) condition, upon detecting the SF condition
cleared, keeps at least one of its ring ports blocked for the traffic channel
and for the R-APS channel, until the RPL is blocked as a result of ring
protection reversion, or until there is another higher priority request (e.g.,
an SF condition) in the ring.
A ring node that has one ring port in an SF condition and detects the SF
condition cleared, continuously transmits the R-APS (NR – no request)
message with its own Node ID as the priority information over both ring
ports, informing that no request is present at this ring node and initiates a
guard timer. When another recovered ring node (or nodes) holding the link
block receives this message, it compares the Node ID information with its
own Node ID. If the received R-APS (NR) message has the higher priority,
this ring node unblocks its ring ports. Otherwise, the block remains
unchanged. As a result, there is only one link with one end blocked.
The ring nodes stop transmitting R-APS (NR) messages when they accept
an R-APS (NR, RB – RPL Blocked), or when another higher priority request is
received.
■
Recovery with Revertive Mode – When all ring links and ring nodes
have recovered and no external requests are active, reversion is
handled in the following way:
a. The reception of an R-APS (NR) message causes the RPL Owner
Node to start the WTR (Wait-to-Restore) timer.