Web Management Guide-R05
Table Of Contents
- How to Use This Guide
- Contents
- Figures
- Tables
- Getting Started
- Web Configuration
- Using the Web Interface
- Basic Management Tasks
- Displaying System Information
- Displaying Hardware/Software Versions
- Configuring Support for Jumbo Frames
- Displaying Bridge Extension Capabilities
- Managing System Files
- Setting the System Clock
- Configuring the Console Port
- Configuring Telnet Settings
- Displaying CPU Utilization
- Configuring CPU Guard
- Displaying Memory Utilization
- Resetting the System
- Using Cloud Management
- Interface Configuration
- VLAN Configuration
- Address Table Settings
- Spanning Tree Algorithm
- Congestion Control
- Class of Service
- Quality of Service
- VoIP Traffic Configuration
- Security Measures
- AAA (Authentication, Authorization and Accounting)
- Configuring User Accounts
- Web Authentication
- Network Access (MAC Address Authentication)
- Configuring HTTPS
- Configuring the Secure Shell
- Access Control Lists
- Filtering IP Addresses for Management Access
- Configuring Port Security
- Configuring 802.1X Port Authentication
- DoS Protection
- DHCP Snooping
- IPv4 Source Guard
- ARP Inspection
- Basic Administration Protocols
- Configuring Event Logging
- Link Layer Discovery Protocol
- Simple Network Management Protocol
- Configuring Global Settings for SNMP
- Setting the Local Engine ID
- Specifying a Remote Engine ID
- Setting SNMPv3 Views
- Configuring SNMPv3 Groups
- Setting Community Access Strings
- Configuring Local SNMPv3 Users
- Configuring Remote SNMPv3 Users
- Specifying Trap Managers
- Creating SNMP Notification Logs
- Showing SNMP Statistics
- Remote Monitoring
- Switch Clustering
- Setting a Time Range
- LBD Configuration
- Smart Pair Configuration
- Multicast Filtering
- Overview
- Layer 2 IGMP (Snooping and Query for IPv4)
- Configuring IGMP Snooping and Query Parameters
- Specifying Static Interfaces for a Multicast Router
- Assigning Interfaces to Multicast Services
- Setting IGMP Snooping Status per Interface
- Filtering IGMP Query Packets and Multicast Data
- Displaying Multicast Groups Discovered by IGMP Snooping
- Displaying IGMP Snooping Statistics
- Filtering and Throttling IGMP Groups
- MLD Snooping (Snooping and Query for IPv6)
- Filtering and Throttling MLD Groups
- Filtering MLD Query Packets on an Interface
- IP Tools
- IP Configuration
- General IP Routing
- Unicast Routing
- Overview
- Configuring the Routing Information Protocol
- Configuring General Protocol Settings
- Clearing Entries from the Routing Table
- Specifying Network Interfaces
- Specifying Passive Interfaces
- Specifying Static Neighbors
- Configuring Route Redistribution
- Specifying an Administrative Distance
- Configuring Network Interfaces for RIP
- Displaying RIP Interface Settings
- Displaying Peer Router Information
- Resetting RIP Statistics
- IP Services
- Appendices
- Glossary
- Index
Chapter 1
| Introduction
Description of Software Features
– 36 –
bits in the IP frame’s Type of Service (ToS) octet using DSCP, or IP Precedence. When
these services are enabled, the priorities are mapped to a Class of Service value by
the switch, and the traffic then sent to the corresponding output queue.
Quality of Service Differentiated Services (DiffServ) provides policy-based management mechanisms
used for prioritizing network resources to meet the requirements of specific traffic
types on a per-hop basis. Each packet is classified upon entry into the network
based on access lists, IP Precedence or DSCP values, or VLAN lists. Using access lists
allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained
in each packet. Based on network policies, different kinds of traffic can be marked
for different kinds of forwarding.
IP Routing The switch provides Layer 3 IP routing. To maintain a high rate of throughput, the
switch forwards all traffic passing within the same segment, and routes only traffic
that passes between different subnetworks. The wire-speed routing provided by
this switch lets you easily link network segments or VLANs together without having
to deal with the bottlenecks or configuration hassles normally associated with
conventional routers.
Routing for unicast traffic is supported with static routing and Routing Information
Protocol (RIP).
Static Routing – Traffic is automatically routed between any IP interfaces
configured on the switch. Routing to statically configured hosts or subnet
addresses is provided based on next-hop entries specified in the static routing
table.
RIP – This protocol uses a distance-vector approach to routing. Routes are
determined on the basis of minimizing the distance vector, or hop count, which
serves as a rough estimate of transmission cost.
Address Resolution
Protocol
The switch uses ARP and Proxy ARP to convert between IP addresses and MAC
(hardware) addresses. This switch supports conventional ARP, which locates the
MAC address corresponding to a given IP address. This allows the switch to use IP
addresses for routing decisions and the corresponding MAC addresses to forward
packets from one hop to the next. Either static or dynamic entries can be
configured in the ARP cache.
Proxy ARP allows hosts that do not support routing to determine the MAC address
of a device on another network or subnet. When a host sends an ARP request for a
remote network, the switch checks to see if it has the best route. If it does, it sends
its own MAC address to the host. The host then sends traffic for the remote
destination via the switch, which uses its own routing table to reach the destination
on the other network.