Specifications

18 GL-S MirrorBit
®
Family IS29GL_128S_01GS_00_Rev.A February 2015
Data Sheet
3. Data Protection
The device offers several features to prevent malicious or accidental modification of any sector via hardware
means.
3.1 Device Protection Methods
3.1.1 Power-Up Write Inhibit
RESET#, CE#, WE#, and, OE# are ignored during Power-On Reset (POR). During POR, the device can not
be selected, will not accept commands on the rising edge of WE#, and does not drive outputs. The Host
Interface Controller (HIC) and Embedded Algorithm Controller (EAC) are reset to their standby states, ready
for reading array data, during POR. CE# or OE# must go to V
IH
before the end of POR (t
VCS
).
At the end of POR the device conditions are:
all internal configuration information is loaded,
the device is in read mode,
the Status Register is at default value,
all bits in the DYB ASO are set to un-protect all sectors,
the Write Buffer is loaded with all 1’s,
the EAC is in the standby state.
3.1.2 Low V
CC
Write Inhibit
When V
CC
is less than V
LKO
, the HIC does not accept any write cycles and the EAC resets. This protects data
during V
CC
power-up and power-down. The system must provide the proper signals to the control pins to
prevent unintentional writes when V
CC
is greater than V
LKO
.
3.2 Command Protection
Embedded Algorithms are initiated by writing command sequences into the EAC command memory. The
command memory array is not readable by the host system and has no ASO. Each host interface write is a
command or part of a command sequence to the device. The EAC examines the address and data in each
write transfer to determine if the write is part of a legal command sequence. When a legal command
sequence is complete the EAC will initiate the appropriate EA.
Writing incorrect address or data values, or writing them in an improper sequence, will generally result in the
EAC returning to its Standby state. However, such an improper command sequence may place the device in
an unknown state, in which case the system must write the reset command, or possibly provide a hardware
reset by driving the RESET# signal Low, to return the EAC to its Standby state, ready for random read.
The address provided in each write may contain a bit pattern used to help identify the write as a command to
the device. The upper portion of the address may also select the sector address on which the command
operation is to be performed. The Sector Address (SA) includes A
MAX
through A16 flash address bits (system
byte address signals a
max
through a17). A command bit pattern is located in A10 to A0 flash address bits
(system byte address signals a11 through a1).
The data in each write may be: a bit pattern used to help identify the write as a command, a code that
identifies the command operation to be performed, or supply information needed to perform the operation.
See Table 6.1 on page 57 for a listing of all commands accepted by the device.
3.3 Secure Silicon Region (OTP)
The Secure Silicon Region (SSR) provides an extra flash memory area that can be programmed once and
permanently protected from further changes i. e. it is a One Time Program (OTP) area. The SSR is
1024 bytes in length. It consists of 512 bytes for Factory Locked Secure Silicon Region and 512 bytes for
Customer Locked Secure Silicon Region.