User`s guide

V3-T9-274 Volume 3—Power Distribution and Control Assemblies CA08100004E—November 2013 www.eaton.com
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9.5
Metering Devices, Protective Relays, Software and Connectivity
Connectivity Options
Copper Ethernet Cable
Wiring Guidelines
The following information can
be used as a guide when
designing an Ethernet system
using Copper Ethernet Cable.
Cables should not be
routed near equipment that
generates strong electric
or magnetic fields such as
motors, drive controllers,
arc welders and conduit
Ethernet cable insulation
has a voltage rating of
300 Vac. Use of barriers,
cable trays or high voltage
sheathing with STP
Ethernet cable may be
required in installations
with cables carrying
voltages greater than
300 Vac. This may
also be necessary in
order to comply with
UL requirements. In
installations where the
cable cannot be physically
separated from the power
cables (where a physical
barrier is not practical) fiber
optic cable should be used
When crossing power
conductors with Ethernet
cable, cross at right angles
Shielded Twisted Pair (STP)
Ethernet cable should be
specified for use in high
noise environments.
Shielded shrouded
connectors must be used
and the shield must be
connected at both ends of
the wire. The mating plug
must have a shielded
shroud that is terminated
to ground at both ends.
Where there is a possibility
of a difference in ground
potential (common mode)
voltages between the
two terminated ends,
fiber optic cable is
recommended
When using conduit or a
metal cable tray, each
section of the conduit or
tray must be bonded to
each adjacent section and
the conduit or tray needs
to be bonded to earth
ground. Do not allow the
shields to touch the
conduit or metal tray at
any point
Only shielded (STP)
Ethernet cables should be
placed into metal conduit.
Some UTP cables may not
function properly when
installed in conduit, as the
metal conduit can affect the
electrical properties of an
unshielded cable. Consult
the cable manufacturer
when installing UTP cables
in conduit
As a general rule for noise
protection, Ethernet Cable
should maintain a minimum
distance of 3 inches (8 cm)
from electric power
conductors for up to
100 volts and 1 inch (3 cm)
for each additional 100 volts
up to 400 volts. STP cable is
recommended
For Ethernet cable run
within conduit, but near
conductors with potentially
noisy power conductors
carrying currents of greater
than 20A or voltages
greater than 400V, maintain
the following distances.
STP cable is required.
Conductors of less than
20A = 3 inches
Conductors of 20A or
more and up to 100 kVA
= 6 inches
Conductors greater than
100 kVA = 12 inches
For Ethernet cable run near
conductors with potentially
noisy power conductors
carrying currents of greater
than 20A or voltages
greater than 400V, maintain
the following distances.
STP cable is recommended
Conductors of less than
20A = 6 inches
Conductors of 20A
or more and up to
100 kVA = 12 inches
Conductors greater than
100 kVA = 24 inches
Route Ethernet cable at
least 5 feet (1.5m) from
sources of rf/microwave
radiation. STP cable is
required
Do not cascade more than
four Ethernet repeaters
(router, switch or hub)
within a network segment
Environmentally sealed
connectors should be
specified for cables used
in outdoor installations
Avoid pinching the cable
when using cable ties
Total distance between an
Ethernet Transmitter and
Receiver at the end points
of the network should not
exceed 328 feet (100m)
Total distance from a patch
panel to a wall jack (using
solid cable) shall not
exceed 295 feet (90m).
Splices are not permitted
Patch cords used as cross-
connect jumpers in a patch
panel should not exceed
20 feet (6m)
Patch cords from a wall
jack to the work area PC
(or device) shall not exceed
16 feet (5m)
Ethernet cable used in
harsh environments
must be selected to
withstand the following
conditions: vibration,
air born contaminants,
chemicals, temperature,
electromagnetic
interference, combustible
atmospheres and local
regulatory standards such
as UL and NEMA
Ethernet connectors used
in harsh environments
must be robust enough
to withstand vibration,
multiple connection cycles,
temperature changes,
and provide a proper
seal to protect against
moisture, dust/dirt and
chemical attack
Different cable media
support different
bandwidth capabilities.
When installing cable in a
network, care should be
taken to install the cable
that will fill current network
loading requirements and
future expansion needs. In
general, fiber optic cable
can support the greatest
bandwidth (upward of
25,000 gigabits) and UTP
has the lowest. CAT5e
cabling is designed to
operate a bit rates up to
1000 Mb and CAT6 cable
up to 2000 Mb
Operating your cable at
maximum speed reduces
the distance between
network segments. Check
with your cable supplier for
specifications regarding
segment distance vs.
speed
Cable with 5% impedance
mismatch or return
loss of 27 to 32 dB is
recommended. Ethernet
cable impedance can vary
by as much as 15%
(85 to 115 ohms). Average
Ethernet cable with 15%
impedance variation
can have up to 10 dB
additional return loss.
This discontinuity is
referred to as return loss,
since it causes some of the
signal to be reflected back
down the cable instead of
propagating forward. It
is measured in decibels or
ratio of transmitted versus
reflected signal