Data Sheet

BNO055
Data sheet
Page 23
BST-BNO055-DS000-14 | Revision 1.4 | June 2016 Bosch Sensortec
© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on
to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.
3.3.3.1 IMU (Inertial Measurement Unit)
In the IMU mode the relative orientation of the BNO055 in space is calculated from the
accelerometer and gyroscope data. The calculation is fast (i.e. high output data rate).
3.3.3.2 COMPASS
The COMPASS mode is intended to measure the magnetic earth field and calculate the
geographic direction.
The earth magnetic field is a vector with the horizontal components x,y and the vertical z
component. It depends on the position on the globe and natural iron occurrence. For heading
calculation (direction of compass pointer) only the horizontal components x and y are used.
Therefore the vector components of the earth magnetic field must be transformed in the
horizontal plane, which requires the knowledge of the direction of the gravity vector. To
summarize, the heading can only be calculated when considering gravity and magnetic field
at the same time.
However, the measurement accuracy depends on the stability of the surrounding magnetic
field. Furthermore, since the earth magnetic field is usually much smaller than the magnetic
fields that occur around and inside electronic devices, the compass mode requires calibration
(see chapter 3.10)
3.3.3.3 M4G (Magnet for Gyroscope)
The M4G mode is similar to the IMU mode, but instead of using the gyroscope signal to
detect rotation, the changing orientation of the magnetometer in the magnetic field is used.
Since the magnetometer has much lower power consumption than the gyroscope, this mode
is less power consuming in comparison to the IMU mode. There are no drift effects in this
mode which are inherent to the gyroscope.
However, as for compass mode, the measurement accuracy depends on the stability of the
surrounding magnetic field.
For this mode no magnetometer calibration is required and also not available.
3.3.3.4 NDOF_FMC_OFF
This fusion mode is same as NDOF mode, but with the Fast Magnetometer Calibration
turned ‘OFF’.
3.3.3.5 NDOF
This is a fusion mode with 9 degrees of freedom where the fused absolute orientation data is
calculated from accelerometer, gyroscope and the magnetometer. The advantages of
combining all three sensors are a fast calculation, resulting in high output data rate, and high
robustness from magnetic field distortions. In this mode the Fast Magnetometer calibration is
turned ON and thereby resulting in quick calibration of the magnetometer and higher output
data accuracy. The current consumption is slightly higher in comparison to the
NDOF_FMC_OFF fusion mode.