Data Sheet
BNO055
Data sheet
Page 22
BST-BNO055-DS000-14 | Revision 1.4 | June 2016 Bosch Sensortec
© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on
to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.
Note: Specifications within this document are subject to change without notice.
3.3.1 Config Mode
This mode is used to configure BNO, wherein all output data is reset to zero and sensor
fusion is halted. This is the only mode in which all the writable register map entries can be
changed. (Exceptions from this rule are the interrupt registers (INT and INT_MSK) and the
operation mode register (OPR_MODE), which can be modified in any operation mode.)
As being said, this mode is the default operation mode after power-on or RESET. Any other
mode must be chosen to be able to read any sensor data.
3.3.2 Non-Fusion Modes
3.3.2.1 ACCONLY
If the application requires only raw accelerometer data, this mode can be chosen. In this
mode the other sensors (magnetometer, gyro) are suspended to lower the power
consumption. In this mode, the BNO055 behaves like a stand-alone acceleration sensor.
3.3.2.1 MAGONLY
In MAGONLY mode, the BNO055 behaves like a stand-alone magnetometer, with
acceleration sensor and gyroscope being suspended.
3.3.2.2 GYROONLY
In GYROONLY mode, the BNO055 behaves like a stand-alone gyroscope, with acceleration
sensor and magnetometer being suspended.
3.3.2.3 ACCMAG
Both accelerometer and magnetometer are switched on, the user can read the data from
these two sensors.
3.3.2.4 ACCGYRO
Both accelerometer and gyroscope are switched on; the user can read the data from these
two sensors.
3.3.2.5 MAGGYRO
Both magnetometer and gyroscope are switched on, the user can read the data from these
two sensors.
3.3.2.6 AMG (ACC-MAG-GYRO)
All three sensors accelerometer, magnetometer and gyroscope are switched on.
3.3.3 Fusion modes
Sensor fusion modes are meant to calculate measures describing the orientation of the
device in space. It can be distinguished between non-absolute or relative orientation and
absolute orientation. Absolute orientation means orientation of the sensor with respect to the
earth and its magnetic field. In other words, absolute orientation sensor fusion modes
calculate the direction of the magnetic north pole.
In non-absolute or relative orientation modes, the heading of the sensor can vary depending
on how the sensor is placed initially.
All fusion modes provide the heading of the sensor as quaternion data or in Euler angles
(roll, pitch and yaw angle). The acceleration sensor is both exposed to the gravity force and
to accelerations applied to the sensor due to movement. In fusion modes it is possible to
separate the two acceleration sources, and thus the sensor fusion data provides separately
linear acceleration (i.e. acceleration that is applied due to movement) and the gravity vector.