Reference Guide
Table Of Contents
- OS10 Enterprise Edition User Guide Release 10.3.0E
- Getting Started
- Download OS10 image and license
- Installation
- Log into OS10
- Install OS10 license
- Remote access
- Upgrade OS10
- CLI Basics
- User accounts
- Key CLI features
- CLI command modes
- CLI command hierarchy
- CLI command categories
- CONFIGURATION Mode
- Command help
- Check device status
- Candidate configuration
- Backup or restore configuration
- Reload system image
- Filter show commands
- Alias command
- Batch mode commands
- Linux shell commands
- SSH commands
- OS9 environment commands
- Common OS10 Commands
- alias
- batch
- boot
- commit
- configure
- copy
- delete
- dir
- discard
- do
- feature config-os9-style
- exit
- license
- lock
- management route
- move
- no
- reload
- show alias
- show boot
- show candidate-configuration
- show environment
- show inventory
- show ip management-route
- show ipv6 management-route
- show license status
- show running-configuration
- show startup-configuration
- show system
- show version
- system
- terminal
- traceroute
- unlock
- write
- Interfaces
- Enable Ethernet interfaces
- L2 mode configuration
- L3 mode configuration
- Management interface
- VLAN interfaces
- Loopback interfaces
- Port-channel interfaces
- Create port-channel
- Add port member
- Minimum links
- Assign IP address
- Remove or disable port-channel
- Load balance traffic
- Change hash algorithm
- Configure interface ranges
- Configure FEC
- View interface configuration
- Interface commands
- channel-group
- description (Interface)
- duplex
- fec
- interface breakout
- interface ethernet
- interface loopback
- interface mgmt
- interface null
- interface port-channel
- interface range
- interface vlan
- link-bundle-utilization
- mgmt
- mtu
- show interface
- show link-bundle-utilization
- show port-channel summary
- show vlan
- shutdown
- speed
- switchport access vlan
- switchport mode
- switchport trunk allowed vlan
- Layer 2
- 802.1X
- Link aggregation control protocol
- Link layer discovery protocol
- Protocol data units
- Optional TLVs
- Organizationally-specific TLVs
- Media endpoint discovery
- Network connectivity device
- LLDP-MED capabilities TLV
- Network policies TLVs
- Define network policies
- Packet timer values
- Disable and re-enable LLDP
- Advertise TLVs
- Network policy advertisement
- Fast start repeat count
- View LLDP configuration
- Adjacent agent advertisements
- Time to live
- LLDP commands
- Media Access Control
- Multiple spanning-tree protocol
- Rapid per-VLAN spanning-tree plus
- Rapid spanning-tree protocol
- Virtual LANs
- Port monitoring
- Layer 3
- Border gateway protocol
- Sessions and peers
- Route reflectors
- Multiprotocol BGP
- Attributes
- Selection criteria
- Weight and local preference
- Multiexit discriminators
- Origin
- AS path and next-hop
- Best path selection
- More path support
- Advertise cost
- 4-Byte AS numbers
- AS number migration
- Configure border gateway protocol
- Enable BGP
- Configure Dual Stack
- Peer templates
- Neighbor fall-over
- Fast external fallover
- Passive peering
- Local AS
- AS number limit
- Redistribute routes
- Additional paths
- MED attributes
- Local preference attribute
- Weight attribute
- Enable multipath
- Route-map filters
- Route reflector clusters
- Aggregate routes
- Confederations
- Route dampening
- Timers
- Neighbor soft-reconfiguration
- BGP commands
- Equal cost multi-path
- IPv4 routing
- IPv6 routing
- Open shortest path first
- Autonomous system areas
- Areas, networks, and neighbors
- Router types
- Designated and backup designated routers
- Link-state advertisements
- Router priority
- Enable OSPF
- Assign router identifier
- Stub areas
- Passive interfaces
- Fast convergence
- Interface parameters
- Redistribute routes
- Troubleshoot OSPF
- OSPFv3
- OSPF commands
- OSPFv3 Commands
- Object tracking manager
- Policy-based routing
- Virtual router redundancy protocol
- Border gateway protocol
- System management
- Access Control Lists
- IP ACLs
- MAC ACLs
- IP fragment handling
- L3 ACL rules
- Assign sequence number to filter
- L2 and L3 ACLs
- Assign and apply ACL filters
- Ingress ACL filters
- Egress ACL filters
- Clear access-list counters
- IP prefix-lists
- Route-maps
- Match routes
- Set conditions
- continue Clause
- ACL flow-based monitoring
- Enable flow-based monitoring
- ACL commands
- clear ip access-list counters
- clear ipv6 access-list counters
- clear mac access-list counters
- deny
- deny (IPv6)
- deny (MAC)
- deny icmp
- deny icmp (IPv6)
- deny ip
- deny ipv6
- deny tcp
- deny tcp (IPv6)
- deny udp
- deny udp (IPv6)
- description
- ip access-group
- ip access-list
- ip as-path deny
- ip as-path permit
- ip community-list standard deny
- ip community–list standard permit
- ip extcommunity-list standard deny
- ip extcommunity-list standard permit
- ip prefix-list description
- ip prefix-list deny
- ip prefix-list permit
- ip prefix-list seq deny
- ip prefix-list seq permit
- ipv6 access-group
- ipv6 access-list
- ipv6 prefix-list deny
- ipv6 prefix-list description
- ipv6 prefix-list permit
- ipv6 prefix-list seq deny
- ipv6 prefix-list seq permit
- mac access-group
- mac access-list
- permit
- permit (IPv6)
- permit (MAC)
- permit icmp
- permit icmp (IPv6)
- permit ip
- permit ipv6
- permit tcp
- permit tcp (IPv6)
- permit udp
- permit udp (IPv6)
- remark
- seq deny
- seq deny (IPv6)
- seq deny (MAC)
- seq deny icmp
- seq deny icmp (IPv6)
- seq deny ip
- seq deny ipv6
- seq deny tcp
- seq deny tcp (IPv6)
- seq deny udp
- seq deny udp (IPv6)
- seq permit
- seq permit (IPv6)
- seq permit (MAC)
- seq permit icmp
- seq permit icmp (IPv6)
- seq permit ip
- seq permit ipv6
- seq permit tcp
- seq permit tcp (IPv6)
- seq permit udp
- seq permit udp (IPv6)
- show access-group
- show access-lists
- show ip as-path-access-list
- show ip community-list
- show ip extcommunity-list
- show ip prefix-list
- Route-map commands
- continue
- match as-path
- match community
- match extcommunity
- match interface
- match ip address
- match ip next-hop
- match ipv6 address
- match ipv6 next-hop
- match metric
- match origin
- match route-type
- match tag
- route-map
- set comm-list delete
- set community
- set extcomm-list delete
- set extcommunity
- set local-preference
- set metric
- set metric-type
- set next-hop
- set origin
- set tag
- set weight
- show route-map
- Quality of service
- Configure quality of service
- Class-map configuration
- Policy-map configuration
- Ingress traffic priorities
- Queue selection
- Strict priority queuing
- Class of service or dot1p classification
- Mark traffic
- Traffic metering
- Bandwidth allocation
- Service-policy rate-shaping
- Policy-based rate-policing
- Control-plane policing
- Congestion avoidance
- Verify configuration
- Egress queue statistics
- QoS commands
- bandwidth
- class
- class-map
- clear interface priority-flow-control
- clear qos statistics
- clear qos statistics type
- control-plane
- flowcontrol
- match
- match cos
- match dscp
- match precedence
- match qos-group
- match vlan
- mtu
- pause
- pfc-cos
- pfc-shared-buffer-size
- police
- policy-map
- priority
- priority-flow-control mode
- qos-group dot1p
- qos-group dscp
- queue-limit
- queue qos-group
- random-detect
- service-policy
- set cos
- set dscp
- set qos-group
- shape
- show class-map
- show control-plane info
- show control-plane statistics
- show interface priority-flow-control
- show qos interface
- show policy-map
- show qos control-plane
- show qos egress bufffers interface
- show egress buffer-stats interface
- show qos ingress buffers interface
- show ingress buffer-stats interface
- show queuing statistics
- show qos system
- show qos system buffers
- show qos maps
- system qos
- trust
- trust dot1p-map
- trust dscp-map
- qos-map traffic-class
- trust-map
- Virtual link trunking
- Converged data center services
- sFlow
- Troubleshoot OS10
- Support resources
Access Control Lists
OS10 uses two types of access policies — hardware-based ACLs and software-based route-maps. Use an ACL to lter trac such as IP,
transmission control protocol (TCP), or user datagram protocol (UDP) packets, and drop or forward matching packets. Use a route-map to
redistribute routes that match congured criteria.
Route-maps are software-based ltering in routing protocol for redistribution of routes from one protocol to another, as well as used in
decision criterion in route advertisements. A route-map denes which of the routes from the specied routing protocol are allowed to be
redistributed into the target routing process (see Route-maps).
An ACL is essentially a lter containing criterion to match (such as examine IP, TCP, or UDP packets), and an action to take (such as
forward or drop packets at the NPU). ACLs permit or deny trac based on MAC and/or IP addresses. The number of ACL entries is
hardware-dependent.
ACLs have only two actions — forward or drop. Route-maps not only permit or block redistributed routes but also modify information
associated with the route when it is redistributed into another protocol. When a packet matches a lter, the device drops or forwards the
packet based on the lter’s specied action. If the packet does not match any of the lters in the ACL, the packet drops (implicit deny).
ACL rules do not consume hardware resources until you apply the ACL to an interface.
The devices processes ACLs in sequence so that if a packet does not match the criterion in the rst lter, the second lter (if congured)
applies. If there are multiple hardware-based ACLs congured on the system, lter rules are applied on the packet content based on the
priority provided by the inserted rule at the NPU.
In a route-map with more than one match criterion, two or more matches within the same route-map sequence have dierent match
commands. Matching a packet against these criterion is a logical AND operation. If no match is found in a route-map sequence, the process
moves to the next route-map sequence until a match is found, or until there are no more sequences. When a match is found, the packet is
forwarded and no additional route-map sequences process. If you include a continue clause in the route-map sequence, the next route-map
sequence also processes after a match is found.
IP ACLs
An ACL lters packets based on:
• IP protocol number
• Source and destination IP address
• Source and destination TCP port number
• Source and destination UDP port number
For ACL, TCP, and UDP lters, match criteria on specic TCP or UDP ports. For ACL TCP lters, you can also match criteria on established
TCP sessions.
When creating an ACL, the sequence of the lters is important. You have a choice of assigning sequence numbers to the lters as you
enter them, or OS10 assigns numbers in the order you create the lters. The sequence numbers display in the show running-
configuration
and show ip access-lists [in | out] command output.
Ingress and egress hot lock ACLs allow you to append or delete new rules into an existing ACL that are already written into content
addressable memory (CAM) without disrupting trac ow. Existing entries in the CAM are shued to accommodate the new entries. Hot
lock ACLs are enabled by default and support ACLs on all platforms.
6
376 Access Control Lists