Reference Guide
Table Of Contents
- OS10 Enterprise Edition User Guide Release 10.3.1E
- Getting Started
- Download OS10 image and license
- Installation
- Log into OS10
- Install OS10 license
- Remote access
- Upgrade OS10
- CLI Basics
- User accounts
- Key CLI features
- CLI command modes
- CLI command hierarchy
- CLI command categories
- CONFIGURATION Mode
- Command help
- Check device status
- Candidate configuration
- Change to transaction-based configuration
- Back up or restore configuration
- Reload system image
- Filter show commands
- Alias command
- Batch mode commands
- Linux shell commands
- SSH commands
- OS9 environment commands
- Common commands
- alias
- batch
- boot
- commit
- configure
- copy
- delete
- dir
- discard
- do
- feature config-os9-style
- exit
- license
- lock
- management route
- move
- no
- reload
- show alias
- show boot
- show candidate-configuration
- show environment
- show inventory
- show ip management-route
- show ipv6 management-route
- show license status
- show running-configuration
- show startup-configuration
- show system
- show version
- start
- system
- system identifier
- terminal
- traceroute
- unlock
- write
- Interfaces
- Ethernet interfaces
- Unified port groups
- L2 mode configuration
- L3 mode configuration
- Fibre Channel interfaces
- Management interface
- VLAN interfaces
- Loopback interfaces
- Port-channel interfaces
- Create port-channel
- Add port member
- Minimum links
- Assign Port Channel IP Address
- Remove or disable port-channel
- Load balance traffic
- Change hash algorithm
- Configure interface ranges
- Energy-efficient Ethernet
- Forward error correction
- Switch-port profiles
- View interface configuration
- Interface commands
- channel-group
- description (Interface)
- duplex
- fec
- interface breakout
- interface ethernet
- interface loopback
- interface mgmt
- interface null
- interface port-channel
- interface range
- interface vlan
- link-bundle-utilization
- mgmt
- mode
- mtu
- port-group
- show interface
- show link-bundle-utilization
- show port-channel summary
- show port-group
- show switch-port-profile
- show vlan
- shutdown
- speed (Fibre Channel)
- speed (Management)
- switch-port-profile
- switchport access vlan
- switchport mode
- switchport trunk allowed vlan
- Fibre channel
- Layer 2
- 802.1X
- Link aggregation control protocol
- Link layer discovery protocol
- Protocol data units
- Optional TLVs
- Organizationally-specific TLVs
- Media endpoint discovery
- Network connectivity device
- LLDP-MED capabilities TLV
- Network policies TLVs
- Define network policies
- Packet timer values
- Disable and re-enable LLDP
- Advertise TLVs
- Network policy advertisement
- Fast start repeat count
- View LLDP configuration
- Adjacent agent advertisements
- Time to live
- LLDP commands
- Media Access Control
- Multiple spanning-tree protocol
- Rapid per-VLAN spanning-tree plus
- Rapid spanning-tree protocol
- Virtual LANs
- Port monitoring
- Layer 3
- Border gateway protocol
- Sessions and peers
- Route reflectors
- Multiprotocol BGP
- Attributes
- Selection criteria
- Weight and local preference
- Multiexit discriminators
- Origin
- AS path and next-hop
- Best path selection
- More path support
- Advertise cost
- 4-Byte AS numbers
- AS number migration
- Configure border gateway protocol
- Enable BGP
- Configure Dual Stack
- Peer templates
- Neighbor fall-over
- Fast external fallover
- Passive peering
- Local AS
- AS number limit
- Redistribute routes
- Additional paths
- MED attributes
- Local preference attribute
- Weight attribute
- Enable multipath
- Route-map filters
- Route reflector clusters
- Aggregate routes
- Confederations
- Route dampening
- Timers
- Neighbor soft-reconfiguration
- BGP commands
- Equal cost multi-path
- IPv4 routing
- IPv6 routing
- Open shortest path first
- Object tracking manager
- Policy-based routing
- Virtual router redundancy protocol
- Border gateway protocol
- System management
- Access Control Lists
- IP ACLs
- MAC ACLs
- IP fragment handling
- L3 ACL rules
- Assign sequence number to filter
- L2 and L3 ACLs
- Assign and apply ACL filters
- Ingress ACL filters
- Egress ACL filters
- Clear access-list counters
- IP prefix-lists
- Route-maps
- Match routes
- Set conditions
- continue Clause
- ACL flow-based monitoring
- Enable flow-based monitoring
- ACL commands
- clear ip access-list counters
- clear ipv6 access-list counters
- clear mac access-list counters
- deny
- deny (IPv6)
- deny (MAC)
- deny icmp
- deny icmp (IPv6)
- deny ip
- deny ipv6
- deny tcp
- deny tcp (IPv6)
- deny udp
- deny udp (IPv6)
- description
- ip access-group
- ip access-list
- ip as-path deny
- ip as-path permit
- ip community-list standard deny
- ip community–list standard permit
- ip extcommunity-list standard deny
- ip extcommunity-list standard permit
- ip prefix-list description
- ip prefix-list deny
- ip prefix-list permit
- ip prefix-list seq deny
- ip prefix-list seq permit
- ipv6 access-group
- ipv6 access-list
- ipv6 prefix-list deny
- ipv6 prefix-list description
- ipv6 prefix-list permit
- ipv6 prefix-list seq deny
- ipv6 prefix-list seq permit
- mac access-group
- mac access-list
- permit
- permit (IPv6)
- permit (MAC)
- permit icmp
- permit icmp (IPv6)
- permit ip
- permit ipv6
- permit tcp
- permit tcp (IPv6)
- permit udp
- permit udp (IPv6)
- remark
- seq deny
- seq deny (IPv6)
- seq deny (MAC)
- seq deny icmp
- seq deny icmp (IPv6)
- seq deny ip
- seq deny ipv6
- seq deny tcp
- seq deny tcp (IPv6)
- seq deny udp
- seq deny udp (IPv6)
- seq permit
- seq permit (IPv6)
- seq permit (MAC)
- seq permit icmp
- seq permit icmp (IPv6)
- seq permit ip
- seq permit ipv6
- seq permit tcp
- seq permit tcp (IPv6)
- seq permit udp
- seq permit udp (IPv6)
- show access-group
- show access-lists
- show ip as-path-access-list
- show ip community-list
- show ip extcommunity-list
- show ip prefix-list
- Route-map commands
- continue
- match as-path
- match community
- match extcommunity
- match interface
- match ip address
- match ip next-hop
- match ipv6 address
- match ipv6 next-hop
- match metric
- match origin
- match route-type
- match tag
- route-map
- set comm-list delete
- set community
- set extcomm-list delete
- set extcommunity
- set local-preference
- set metric
- set metric-type
- set next-hop
- set origin
- set tag
- set weight
- show route-map
- Quality of service
- Configure quality of service
- Class-map configuration
- Policy-map configuration
- Ingress traffic priorities
- Queue selection
- Strict priority queuing
- Class of service or dot1p classification
- Mark traffic
- Traffic metering
- Bandwidth allocation
- Service-policy rate-shaping
- Policy-based rate-policing
- Control-plane policing
- Congestion avoidance
- Verify configuration
- Egress queue statistics
- QoS commands
- bandwidth
- class
- class-map
- clear interface priority-flow-control
- clear qos statistics
- clear qos statistics type
- control-plane
- flowcontrol
- match
- match cos
- match dscp
- match precedence
- match qos-group
- match vlan
- mtu
- pause
- pfc-cos
- pfc-shared-buffer-size
- police
- policy-map
- priority
- priority-flow-control mode
- qos-group dot1p
- qos-group dscp
- queue-limit
- queue qos-group
- random-detect
- service-policy
- set cos
- set dscp
- set qos-group
- shape
- show class-map
- show control-plane info
- show control-plane statistics
- show interface priority-flow-control
- show qos interface
- show policy-map
- show qos control-plane
- show qos egress bufffers interface
- show egress buffer-stats interface
- show qos ingress buffers interface
- show ingress buffer-stats interface
- show queuing statistics
- show qos system
- show qos system buffers
- show qos maps
- system qos
- trust
- trust dot1p-map
- trust dscp-map
- qos-map traffic-class
- trust-map
- Virtual link trunking
- Converged data center services
- sFlow
- Troubleshoot OS10
- Support resources
The router redirect functionality in the Neighbor Discovery protocol (NDP) is similar to IPv4 router redirect messages. NDP uses ICMPv6
redirect messages (Type 137) to inform nodes that a better router exists on the link.
IPv6 addresses
An IPv6 address consists of a 48-bit global routing prex, optional 16-bit subnet ID (referred to as the site-level aggregator or SLA), and a
64-bit interface identier in the extended universal identier (EUI)-64 format.
IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal elds separated by colons in the format: n:n:n:n:n:n:n:n. This
is an example of an IPv6 address:
2001:0db8:0000:0000:0000:0000:1428:57a
Leading zeros in each eld are optional. You can also use two colons (::) to represent successive hexadecimal elds of zeros, but you can
use this short version only once in each address:
2001:db8::1428:57ab
In the following example, all the addresses are valid and equivalent:
• 2001:0db8:0000:0000:0000:0000:1428:57ab
• 2001:0db8:0000:0000:0000::1428:57ab
•
2001:0db8:0:0:0:0:1428:57ab
• 2001:0db8:0:0::1428:57ab
• 2001:0db8::1428:57ab
• 2001:db8::1428:57ab
IPv6 networks are written using CIDR notation. An IPv6 network (or subnet) is a contiguous group of IPv6 addresses the size of which
must be a power of two. The initial bits of addresses, which are identical for all hosts in the network, are called the network's prex.
A network is denoted by the rst address in the network and the size in bits of the prex (in decimal), separated with a slash. Because a
single host is seen as a network with a 128-bit prex, host addresses may be written with a following /128.
For example, 2001:0db8:1234::/48 stands for the network with addresses 2001:0db8:1234:0000:0000:0000:0000:0000
through 2001:0db8:1234:ffff:ffff:ffff:ffff:ffff.
As soon as an IPv6 address is assigned, IPv6 packet processing is enabled on an interface.
Link-local addresses
When an OS10 switch boots up, an IPv6 unicast link-local address is automatically assigned to an interface using stateless conguration. A
link-local address allows IPv6 devices on a local link to communicate without requiring a globally unique address.
A link-local address autocongures using the prex FE80::/10 received from a neighboring IPv6 device on a local link, and generates an
interface identier in EUI-64 format using the interface's MAC address. IPv6 reserves the address block FE80::/10 for link-local unicast
addressing.
DHCP-assigned addresses
An IPv6 address can also be automatically assigned using a DHCP server (ipv6 address dhcp command). A DHCPv6 server uses a
prex pool to congure a network address on an interface. The interface ID is automatically generated.
Manally congured addresses
An interface can have multiple IPv6 addresses. To congure an IPv6 address in addition to the link-local address, enter the ipv6
address
ipv6-address/mask command. You only need to specify the network prex because the 64-bit interface ID is automatically
calculated from the MAC address.
Layer 3
283