Deployment Guide
Table Of Contents
- VXLAN and BGP EVPN Configuration Guide for Dell EMC SmartFabric OS10 Release 10.5.0
- VXLAN
- VXLAN concepts
- VXLAN as NVO solution
- Configure VXLAN
- L3 VXLAN route scaling
- Overlay ECMP for L3 prefix routes
- DHCP relay on VTEPs
- View VXLAN configuration
- VXLAN MAC addresses
- VXLAN commands
- hardware overlay-ecmp-profile mode
- hardware overlay-routing-profile
- interface virtual-network
- ip virtual-router address
- ip virtual-router mac-address
- member-interface
- nve
- remote-vtep
- show hardware overlay-ecmp-profile mode
- show hardware overlay-routing-profile mode
- show interface virtual-network
- show nve remote-vtep
- show nve remote-vtep counters
- show nve vxlan-vni
- show virtual-network
- show virtual-network counters
- show virtual-network interface counters
- show virtual-network interface
- show virtual-network vlan
- show vlan (virtual network)
- source-interface loopback
- virtual-network
- virtual-network untagged-vlan
- vxlan-vni
- VXLAN MAC commands
- clear mac address-table dynamic nve remote-vtep
- clear mac address-table dynamic virtual-network
- show mac address-table count extended
- show mac address-table count nve
- show mac address-table count virtual-network
- show mac address-table extended
- show mac address-table nve
- show mac address-table virtual-network
- Example: VXLAN with static VTEP
- BGP EVPN for VXLAN
- BGP EVPN compared to static VXLAN
- VXLAN BGP EVPN operation
- Disable RT ASN in BGP EVPN
- Configure BGP EVPN for VXLAN
- VXLAN BGP EVPN routing
- BGP EVPN with VLT
- VXLAN BGP commands
- VXLAN EVPN commands
- Example: VXLAN with BGP EVPN
- Example: VXLAN BGP EVPN — Multiple AS topology
- Example: VXLAN BGP EVPN — Centralized L3 gateway
- Example: VXLAN BGP EVPN — Border leaf gateway with asymmetric IRB
- Example: VXLAN BGP EVPN—Symmetric IRB
- Controller-provisioned VXLAN
- Support resources
Switch-scoped
VLAN
A VLAN that is mapped to a virtual network ID (VNID) in OS10. All member ports of the VLAN are
automatically added to the virtual network.
● You can map only one VLAN ID to a virtual network.
● Ideally suited for existing tenant VLANs that stretch over an IP fabric using VXLAN.
Port-scoped
VLAN
A Port,VLAN pair that maps to a virtual network ID (VNID) in OS10. Assign an individual member interface
to a virtual network either with an associated tagged VLAN or as an untagged member. Using a port-
scoped VLAN, you can configure:
● The same VLAN ID on different access interfaces to different virtual networks.
● Different VLAN IDs on different access interfaces to the same virtual network.
VXLAN as NVO solution
Network virtualization overlay (NVO) is a solution that addresses the requirements of a multi-tenant data center, especially one
with virtualized hosts. An NVO network is an overlay network that is used to extend L2 connectivity among VMs belonging to
a tenant segment over an underlay IP network. Each tenant payload is encapsulated in an IP packet at the originating VTEP. To
access the payload, the tenant payload is stripped of the encapsulation at the destination VTEP. Each tenant segment is also
known as a virtual-network and is uniquely identified in OS10 using a virtual network ID (VNID).
VXLAN is a type of encapsulation used as an NVO solution. VXLAN encapsulates a tenant payload into IP UDP packets for
transport across the IP underlay network. In OS10, each virtual network is assigned a 24-bit number that is called a VXLAN
network identifier (VNI) that the VXLAN-encapsulated packet carries. The VNI uniquely identifies the tenant segment on all
VTEPs. OS10 sets up ASIC tables to:
● Enables creation of a L2 bridge flooding domain across a L3 network.
● Facilitates packet forwarding between local ports and tunneling packets from the local device to a remote device.
Configure VXLAN
To extend a L2 tenant segment using VXLAN, follow these configuration steps on each VTEP switch:
1. Configure the source IP address used in encapsulated VXLAN packets.
2. Configure a virtual network and assign a VXLAN VNI.
3. Configure VLAN-tagged access ports.
4. Configure untagged access ports.
5. (Optional) Enable routing for hosts on different virtual networks.
6. Advertise the local VXLAN source IP address to remote VTEPs.
7. (Optional) Configure VLT.
Configure source IP address on VTEP
When you configure a switch as a VXLAN tunnel endpoint (VTEP), configure a Loopback interface, whose IP address is used
as the source IP address in encapsulated packet headers. Only a Loopback interface assigned to a network virtualization edge
(NVE) instance is used as a source VXLAN interface.
● Do not reconfigure the VXLAN source interface or the IP address assigned to the source interface if there is at least one
VXLAN network ID (VNI) already assigned to a virtual-network ID (VNID) on the switch.
● The source Loopback IP address must be reachable from a remote VTEP.
● An IPv6 address is not supported as the source VXLAN address.
● Do not assign the source Loopback interface to a non-default VRF instance.
● Underlay reachability of remote tunnel endpoints is supported only in the default VRF.
● Do not assign the IP address that is configured as the source IP address to end hosts in any VRF.
1. Configure a Loopback interface to serve as the source VXLAN tunnel endpoint in CONFIGURATION mode. The range is from
0 to 255.
interface loopback number
8
VXLAN