Dell Configuration Guide for the S6010–ON System 9.14.2.
Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2019 - 2020 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries.
Contents 1 About this Guide......................................................................................................................... 32 Audience............................................................................................................................................................................... 32 Conventions..................................................................................................................................................................
Allowing Access to Different Modes...........................................................................................................................54 Applying a Privilege Level to a Username...................................................................................................................55 Applying a Privilege Level to a Terminal Line............................................................................................................. 55 Configuring Logging.................
Configuring Timeouts..........................................................................................................................................................84 Configuring Dynamic VLAN Assignment with Port Authentication.............................................................................. 85 Guest and Authentication-Fail VLANs.............................................................................................................................. 86 Configuring a Guest VLAN....
BFD Sessions................................................................................................................................................................. 117 BFD Three-Way Handshake........................................................................................................................................ 118 Session State Changes................................................................................................................................................
Enabling Multipath....................................................................................................................................................... 192 Route Reflectors.......................................................................................................................................................... 193 Enabling Route Flap Dampening.................................................................................................................................
Data Center Bridging: Default Configuration.................................................................................................................228 Configuring Priority-Based Flow Control....................................................................................................................... 228 Configuring Lossless Queues.....................................................................................................................................
Debugging the DHCP Server.....................................................................................................................................265 Using DHCP Clear Commands.................................................................................................................................. 265 Configure the System to be a DHCP Client..................................................................................................................
Enable FIP Snooping on VLANs................................................................................................................................ 290 Configure the FC-MAP Value.....................................................................................................................................291 Configure a Port for a Bridge-to-Bridge Link...........................................................................................................
Configure IGMP.................................................................................................................................................................324 Viewing IGMP Enabled Interfaces...................................................................................................................................324 Selecting an IGMP Version..............................................................................................................................................
Configuring the Minimum Oper Up Links in a Port Channel.................................................................................. 352 Adding or Removing a Port Channel from a VLAN.................................................................................................352 Assigning an IP Address to a Port Channel..............................................................................................................353 Deleting or Disabling a Port Channel.................................
Specifying the Local System Domain and a List of Domains.......................................................................................386 Configuring DNS with Traceroute.................................................................................................................................. 386 ARP.....................................................................................................................................................................................
Showing IPv6 Routes................................................................................................................................................. 408 Showing the Running-Configuration for an Interface............................................................................................ 409 Clearing IPv6 Routes...................................................................................................................................................
Introduction to Dynamic LAGs and LACP.......................................................................................................................441 Important Points to Remember..................................................................................................................................441 LACP Modes.................................................................................................................................................................
Disabling and Undoing LLDP...................................................................................................................................... 473 Enabling LLDP on Management Ports............................................................................................................................473 Disabling and Undoing LLDP on Management Ports.............................................................................................. 474 Advertising TLVs.........................
Reducing Host Response Burstiness.........................................................................................................................514 Configuring MLD Version..................................................................................................................................................514 Clearing MLD groups.........................................................................................................................................................
Disable MLD Snooping................................................................................................................................................552 Configure the switch as a querier............................................................................................................................. 552 Specify port as connected to multicast router........................................................................................................
Enabling OSPFv3 Graceful Restart...........................................................................................................................588 OSPFv3 Authentication Using IPsec........................................................................................................................ 590 Troubleshooting OSPFv3........................................................................................................................................... 595 MIB Support for OSPFv3.......
Configuration procedure for Remote Port Mirroring..............................................................................................628 Encapsulated Remote Port Monitoring.......................................................................................................................... 632 ERPM Behavior on a typical Dell EMC Networking OS .............................................................................................. 634 Port Monitoring on VLT................................
Classifying Incoming Packets Using ECN and Color-Marking...............................................................................669 Sample configuration to mark non-ecn packets as “yellow” with single traffic class........................................ 670 Applying Layer 2 Match Criteria on a Layer 3 Interface............................................................................................... 671 Managing Hardware Buffer Statistics.........................................................
Privilege Levels Overview.......................................................................................................................................... 709 Configuration Task List for Privilege Levels.............................................................................................................709 RADIUS................................................................................................................................................................................
Configuring Dell EMC Networking OS Options for Trunk Ports........................................................................... 756 Debugging VLAN Stacking......................................................................................................................................... 757 VLAN Stacking in Multi-Vendor Networks...............................................................................................................757 VLAN Stacking Packet Drop Precedence....................
Copy Configuration Files Using SNMP...........................................................................................................................786 Copying a Configuration File...................................................................................................................................... 787 Copying Configuration Files via SNMP.....................................................................................................................
Transceiver Monitoring..................................................................................................................................................... 812 Configuring SNMP context name....................................................................................................................................813 49 Stacking................................................................................................................................. 814 Stacking Overview.........
Enabling Spanning Tree Protocol Globally..................................................................................................................... 836 Adding an Interface to the Spanning Tree Group......................................................................................................... 838 Modifying Global Parameters..........................................................................................................................................
Configuring Tunnel source anylocal Decapsulation.......................................................................................................866 Guidelines for Configuring Multipoint Receive-Only Tunnels...................................................................................... 867 Multipoint Receive-Only Tunnels.................................................................................................................................... 867 55 Uplink Failure Detection (UFD).......
Preventing Forwarding Loops in a VLT Domain...................................................................................................... 898 Sample RSTP configuration....................................................................................................................................... 899 Configuring VLT.......................................................................................................................................................... 899 PVST+ Configuration....
Displaying VXLAN Configurations................................................................................................................................... 964 VXLAN Service nodes for BFD....................................................................................................................................... 965 Static Virtual Extensible LAN (VXLAN).........................................................................................................................
Proxy Gateway with VRRP............................................................................................................................................ 1022 63 Debugging and Diagnostics.................................................................................................... 1027 Offline Diagnostics...........................................................................................................................................................1027 Important Points to Remember..
Online Certificate Status Protocol (OSCP)................................................................................................................. 1062 Configuring OCSP setting on CA............................................................................................................................ 1062 Configuring OCSP behavior.....................................................................................................................................
1 About this Guide This guide describes the protocols and features the Dell EMC Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. For complete information about all the CLI commands, see the Dell EMC Command Line Reference Guide for your system. The S6000–ON platform is available with Dell EMC Networking OS version 9.7(0.0) and beyond. Though this guide contains information about protocols, it is not intended to be a complete reference.
2 Configuration Fundamentals The Dell EMC Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
• EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted. You can configure a password for this mode; refer to the Configure the Enable Password section in the Getting Started chapter.
ROUTER OSPF ROUTER OSPFV3 ROUTER RIP SPANNING TREE SUPPORTASSIST TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP uBoot Navigating CLI Modes The Dell EMC Networking OS prompt changes to indicate the CLI mode. The following table lists the CLI mode, its prompt, and information about how to access and exit the CLI mode. Move linearly through the command modes, except for the end command which takes you directly to EXEC Privilege mode and the exit command which moves you up one command mode level.
CLI Command Mode Prompt Access Command EXTENDED ACCESS-LIST DellEMC(config-ext-nacl)# ip access-list extended (IP ACCESS-LIST Modes) IP COMMUNITY-LIST DellEMC(config-community-list)# ip community-list AUXILIARY DellEMC(config-line-aux)# line (LINE Modes) CONSOLE DellEMC(config-line-console)# line (LINE Modes) VIRTUAL TERMINAL DellEMC(config-line-vty)# line (LINE Modes) STANDARD ACCESS-LIST DellEMC(config-std-macl)# mac access-list standard (MAC ACCESS-LIST Modes) EXTENDED ACCESS-LIST De
CLI Command Mode Prompt Access Command MONITOR SESSION DellEMC(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE DellEMC(conf-of-instance-ofid)# openflow of-instance PORT-CHANNEL FAILOVER-GROUP DellEMC(conf-po-failover-grp)# port-channel failover-group PRIORITY GROUP DellEMC(conf-pg)# priority-group PROTOCOL GVRP DellEMC(config-gvrp)# protocol gvrp QOS POLICY DellEMC(conf-qos-policy-outets)# qos-policy-output SUPPORTASSIST DellEMC(support-assist)# support-assist VLT DOMAIN
Undoing Commands When you enter a command, the command line is added to the running configuration file (running-config). To disable a command and remove it from the running-config, enter the no command, then the original command. For example, to delete an IP address configured on an interface, use the no ip address ip-address command. NOTE: Use the help or ? command as described in Obtaining Help.
• • • The UP and DOWN arrow keys display previously entered commands (refer to Command History). The BACKSPACE and DELETE keys erase the previous letter. Key combinations are available to move quickly across the command line. The following table describes these short-cut key combinations. Short-Cut Key Action Combination CNTL-A Moves the cursor to the beginning of the command line. CNTL-B Moves the cursor back one character. CNTL-D Deletes character at cursor.
The grep command displays only the lines containing specified text. The following example shows this command used in combination with the show system brief command. Example of the grep Keyword DellEMC(conf)#do show system brief | grep 0 0 not present NOTE: Dell EMC Networking OS accepts a space or no space before and after the pipe. To filter a phrase with spaces, underscores, or ranges, enclose the phrase with double quotation marks. The except keyword displays text that does not match the specified text.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) and system then loads the Dell EMC Networking Operating System. Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption. When the boot process completes, the system status LEDs remain online (green) and the console monitor displays the EXEC mode prompt.
Console Access The device has one RJ-45/RS-232 console port, an out-of-band (OOB) Ethernet port, and a micro USB-B console port. Serial Console The RJ-45/RS-232 console port is labeled on the upper right-hand side, as you face the I/O side of the chassis. Figure 1. RJ-45 Console Port 1. RS-232 console port. 2. USB port. Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter. 1.
Console Port RJ-45 to RJ-45 Rollover Cable RJ-45 to RJ-45 Rollover Cable RJ-45 to DB-9 Adapter Terminal Server Device Signal RJ-45 Pinout RJ-45 Pinout DB-9 Pin Signal TxD 3 6 2 RxD GND 4 5 5 GND GND 5 4 5 GND RxD 6 3 3 TxD NC 7 2 4 DTR CTS 8 1 7 RTS Default Configuration Although a version of Dell EMC Networking OS is pre-loaded onto the system, the system is not configured when you power up the system first time (except for the default hostname, which is DellEMC).
3. Enable the interface. INTERFACE mode no shutdown Configure a Management Route Define a path from the system to the network from which you are accessing the system remotely. Management routes are separate from IP routes and are only used to manage the system through the management port. To configure a management route, use the following command. • Configure a management route to the network from which you are accessing the system.
Configuring the Enable Password Access EXEC Privilege mode using the enable command. EXEC Privilege mode is unrestricted by default. Configure a password as a basic security measure. There are three types of enable passwords: • • • enable password is stored in the running/startup configuration using a DES encryption method. enable secret is stored in the running/startup configuration using MD5 encryption method.
• • • You may not copy a file from one location to the same location. When copying to a server, you can only use a hostname if a domain name server (DNS) server is configured. The usbflash command is supported on the device. Refer to your system’s Release Notes for a list of approved USB vendors. Example of Copying a File to an FTP Server DellEMC#copy flash://Dell-EF-8.2.1.0.bin ftp://myusername:mypassword@10.10.10.10/ /Dell/Dell-EF-8.2.1.
DellEMC# DellEMC#copy ftp://10.16.127.35 nfsmount: Source file name []: test.c User name to login remote host: username Example of Logging in to Copy from NFS Mount DellEMC#copy nfsmount:///test flash: Destination file name [test]: test2 ! 5592 bytes successfully copied DellEMC# DellEMC#copy nfsmount:///test.txt ftp://10.16.127.35 Destination file name [test.txt]: User name to login remote host: username Password to login remote host: ! Example of Copying to NFS Mount DellEMC#copy flash://test.
NOTE: When you load the startup configuration or a configuration file from a network server such as TFTP to the running configuration, the configuration is added to the running configuration. This does not replace the existing running configuration. Commands in the configuration file has precedence over commands in the running configuration.
Managing the File System The Dell EMC Networking system can use the internal Flash, external Flash, or remote devices to store files. The system stores files on the internal Flash by default but can be configured to store files elsewhere. To view file system information, use the following command. • View information about each file system.
[May 17 15:43:22]: CMD-(CLI):[show command-history]by default from console DellEMC# Example 2: service timestamps log datetime utc DellEMC(conf)#service timestamps log datetime utc DellEMC# show command-history - Repeated 1 time. [May 17 15:46:44]: CMD-(CLI):[configure]by default from console - Repeated 1 time.
You can download the release notes of your platform at https://www.force10networks.com. Use your login ID to log in to the website. Using HTTP for File Transfers Stating with Release 9.3(0.1), you can use HTTP to copy files or configuration details to a remote server. To transfer files to an external server, use the copy source-file-url http://host[:port]/file-path command.
• • • • sha256: SHA256 Secure Hash Algorithm flash: (Optional) Specifies the flash drive. The default uses the flash drive. You can enter the image file name. hash-value: (Optional). Specify the relevant hash published on iSupport.
4 Management This chapter describes the different protocols or services used to manage the Dell EMC Networking system.
Removing a Command from EXEC Mode To remove a command from the list of available commands in EXEC mode for a specific privilege level, use the privilege exec command from CONFIGURATION mode. In the command, specify a level greater than the level given to a user or terminal line, then the first keyword of each command you wish to restrict.
• privilege configure level level {interface | line | route-map | router} {command-keyword ||...|| command-keyword} Allow access to a CONFIGURATION, INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode command. CONFIGURATION mode privilege {configure |interface | line | route-map | router} level level {command ||...
username username privilege level NOTE: When you assign a privilege level between 2 and 15, access to the system begins at EXEC mode, but the prompt is hostname#, rather than hostname>. Configuring Logging The Dell EMC Networking OS tracks changes in the system using event and error messages. By default, Dell EMC Networking OS logs these messages on: • • • the internal buffer console and terminal lines any configured syslog servers To disable logging, use the following commands.
• User access and configuration changes to the security and crypto parameters (not the key information but the crypto configuration) Important Points to Remember When you enabled RBAC and extended logging: • • • • • Only the system administrator user role can execute this command. The system administrator and system security administrator user roles can view security events and system events. The system administrator user roles can view audit, security, and system events.
Example of Configuring the Logging Message Format DellEMC(conf)#logging version ? <0-1> Select syslog version (default = 0) DellEMC(conf)#logging version 1 Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Figure 2. Setting Up a Secure Connection to a Syslog Server Pre-requisites To configure a secure connection from the switch to the syslog server: 1.
If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. DellEMC(conf)# logging localhost tcp port DellEMC(conf)#logging 127.0.0.1 tcp 5140 Log Messages in the Internal Buffer All error messages, except those beginning with %BOOTUP (Message), are log in the internal buffer.
In the previous lines, local7 is the logging facility level and debugging is the severity level. Track Login Activity Dell EMC Networking OS enables you to track the login activity of users and view the successful and unsuccessful login events.
Example of the show login statistics all command The show login statistics all command displays the successful and failed login details of all users in the last 30 days or the custom defined time period. DellEMC#show login statistics all -----------------------------------------------------------------User: admin Last login time: 08:54:28 UTC Wed Mar 23 2016 Last login location: Line vty0 ( 10.16.127.
The following is sample output of the show login statistics unsuccessful-attempts user login-id command. DellEMC# show login statistics unsuccessful-attempts user admin There were 3 unsuccessful login attempt(s) for user admin in last 12 day(s). The following is sample output of the show login statistics successful-attempts command. DellEMC#show login statistics successful-attempts There were 4 successful login attempt(s) for user admin in last 30 day(s).
session, the system does not allow any attempt to login since maximum concurrent sessions have reached even though more VTY lines are available. You are allowed to login as a different user as more VTY lines are available. The following example enables you to clear your existing login sessions.
• logging buffered level Specify the minimum severity level for logging to the console. • CONFIGURATION mode logging console level Specify the minimum severity level for logging to terminal lines. • CONFIGURATION mode logging monitor level Specify the minimum severity level for logging to a syslog server. • CONFIGURATION mode logging trap level Specify the minimum severity level for logging to the syslog history table.
%TSM-6-SFM_DISCOVERY: Found SFM 8 %TSM-6-SFM_DISCOVERY: Found 9 SFMs %CHMGR-5-CHECKIN: Checkin from line card 5 (type EX1YB, 1 ports) %TSM-6-PORT_CONFIG: Port link status for LC 5 => portpipe 0: OK portpipe 1: N/A %CHMGR-5-LINECARDUP: Line card 5 is up %CHMGR-5-CHECKIN: Checkin from line card 12 (type S12YC12, 12 ports) %TSM-6-PORT_CONFIG: Port link status for LC 12 => portpipe 0: OK portpipe 1: N/A %CHMGR-5-LINECARDUP: Line card 12 is up %IFMGR-5-CSTATE_UP: changed interface Physical state to up: So 12/8 %
Synchronizing Log Messages You can configure Dell EMC Networking OS to filter and consolidate the system messages for a specific line by synchronizing the message output. Only the messages with a severity at or below the set level appear. This feature works on the terminal and console connections available on the system. 1. Enter LINE mode.
[May 17 15:41:50]: CMD-(CLI):[no shutdown]by default from console [May 17 15:42:42]: CMD-(CLI):[show clock]by default from console [May 17 15:42:52]: CMD-(CLI):[write memory]by default from console - Repeated 1 time.
DellEMC(conf)#service timestamps log uptime DellEMC#show clock 15:51:47.
default - repeated 3 times %STKUNIT1-M:CP %FILEMGR-5-FILESAVED: Copied running-config to startup-config in flash by default File Transfer Services With Dell EMC Networking OS, you can configure the system to transfer files over the network using the file transfer protocol (FTP). One FTP application is copying the system image files over an interface on to the system; however, FTP is not supported on virtual local area network (VLAN) interfaces.
• password: enter a text string. NOTE: You cannot use the change directory (cd) command until you have configured ftp-server topdir. To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode. Configuring FTP Client Parameters To configure FTP client parameters, use the following commands.
configurations, you must first undo the existing configuration using the no access-class access-list-name [ipv4 | ipv6] command. To view the configuration, use the show config command in LINE mode. DellEMC(config-std-nacl)#show config ! ip access-list standard myvtyacl seq 5 permit host 10.11.0.1 DellEMC(config-std-nacl)#line vty 0 DellEMC(config-line-vty)#show config line vty 0 access-class myvtyacl DellEMC(conf-ipv6-acl)#do show run acl ! ip access-list extended testdeny seq 10 deny ip 30.1.1.
3. If you used the line authentication method in the method list you applied to the terminal line, configure a password for the terminal line. LINE mode password In the following example, VTY lines 0-2 use a single authentication method, line.
Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported. DellEMC# telnet 10.11.80.203 Trying 10.11.80.203... Connected to 10.11.80.203. Exit character is '^]'. Login: Login: admin Password: DellEMC>exit DellEMC#telnet 2200:2200:2200:2200:2200::2201 Trying 2200:2200:2200:2200:2200::2201... Connected to 2200:2200:2200:2200:2200::2201. Exit character is '^]'. FreeBSD/i386 (freebsd2.force10networks.
Restoring the Factory Default Settings Restoring the factory-default settings deletes the existing NVRAM settings, startup configuration, and all configured settings such as, stacking or fanout. To restore the factory default settings, use the restore factory-defaults stack-unit {stack—unit—number | all} {clear-all | nvram | bootvar} command in EXEC Privilege mode. CAUTION: There is no undo for this command.
You enter BLI immediately, as indicated by the BOOT_USER # prompt. press any key 3. Assign the new location of the Dell EMC Networking OS image to be used when the system reloads. To boot from flash partition A: BOOT_USER # boot change primary boot device : flash file name : systema BOOT_USER # To boot from flash partition B: BOOT_USER # boot change primary boot device : flash file name : systemb BOOT_USER # To boot from network: BOOT_USER # boot change primary boot device : tftp file name : FTOS-S6010-9.
Disabling Syslog Messages for SNMP Authentication Failure Events The system generates syslog messages for SNMP authentication events. Over time, these messages can fill up the syslog file on the system, making analyzing system logs a cumbersome task. You can disable syslog messages for SNMP authentication failure events on the system. To disable these messages, follow this procedure: • Disable syslog messages for SNMP authentication failure events.
5 802.1X 802.1X is a port-based Network Access Control (PNAC) that provides an authentication mechanism to devices wishing to attach to a LAN or WLAN. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity is verified (through a username and password, for example). 802.
• • • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network. It translates and forwards requests and responses between the authentication server and the supplicant.
Figure 5. EAP Port-Authentication EAP over RADIUS 802.1X uses RADIUS to shuttle EAP packets between the authenticator and the authentication server, as defined in RFC 3579. EAP messages are encapsulated in RADIUS packets as a type of attribute in Type, Length, Value (TLV) format. The Type value for EAP messages is 79. Figure 6. EAP Over RADIUS RADIUS Attributes for 802.1X Support Dell EMC Networking systems include the following RADIUS attributes in all 802.
Related Configuration Tasks • • • • • • Configuring Request Identity Re-Transmissions Forcibly Authorizing or Unauthorizing a Port Re-Authenticating a Port Configuring Timeouts Configuring a Guest VLAN Configuring an Authentication-Fail VLAN Important Points to Remember • • • • • Dell EMC Networking OS supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. All platforms support only RADIUS as the authentication server.
1. Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication Verify that 802.1X is enabled globally and at the interface level using the show running-config | find dot1x command from EXEC Privilege mode. In the following example, the bold lines show that 802.1X is enabled.
NOTE: There are several reasons why the supplicant might fail to respond; for example, the supplicant might have been booting when the request arrived or there might be a physical layer problem. To configure re-transmissions, use the following commands. • Configure the amount of time that the authenticator waits before re-transmitting an EAP Request Identity frame. INTERFACE mode dot1x tx-period number The range is from 1 to 65535 (1 year) The default is 30.
Forcibly Authorizing or Unauthorizing a Port The 802.1X ports can be placed into any of the three states: • • • ForceAuthorized — an authorized state. A device connected to this port in this state is never subjected to the authentication process, but is allowed to communicate on the network. Placing the port in this state is same as disabling 802.1X on the port. ForceUnauthorized — an unauthorized state.
The range is from 1 to 10. The default is 2. The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period. DellEMC(conf-if-Te-1/1/1)#dot1x reauthentication interval 7200 DellEMC(conf-if-Te-1/1/1)#dot1x reauth-max 10 DellEMC(conf-if-Te-1/1/1)#do show dot1x interface TenGigabitEthernet 1/1/1 802.
Tx Period: 90 seconds Quiet Period: 120 seconds ReAuth Max: 10 Supplicant Timeout: 15 seconds Server Timeout: 15 seconds Re-Auth Interval: 7200 seconds Max-EAP-Req: 10 Auth Type: Auth PAE State: Backend State: SINGLE_HOST Initialize Initialize Enter the tasks the user should do after finishing this task (optional). Configuring Dynamic VLAN Assignment with Port Authentication Dell EMC Networking OS supports dynamic VLAN assignment when using 802.1X.
1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
Example of Configuring Maximum Authentication Attempts DellEMC(conf-if-Te-1/1/1)#dot1x guest-vlan 200 DellEMC(conf-if-Te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown DellEMC(conf-if-Te-1/1/1)# DellEMC(conf-if-Te-1/1/1)#dot1x auth-fail-vlan 100 max-attempts 5 DellEMC(conf-if-Te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdo
6 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
• • • • • • • • • Applying an IP ACL Configure Ingress ACLs Configure Egress ACLs IP Prefix Lists ACL Remarks ACL Resequencing Route Maps Flow-Based Monitoring Configuring IP Mirror Access Group IP Access Control Lists (ACLs) In Dell EMC Networking switch/routers, you can create two different types of IP ACLs: standard or extended. A standard ACL filters packets based on the source IP packet.
Test CAM Usage This command applies to both IPv4 and IPv6 CAM profiles, but is best used when verifying QoS optimization for IPv6 ACLs. To determine whether sufficient ACL CAM space is available to enable a service-policy, use this command. To verify the actual CAM space required, create a class map with all the required ACL rules, then execute the test cam-usage command in Privilege mode. The following example shows the output when executing this command.
ACLs acl1 and acl2 have overlapping rules because the address range 20.1.1.0/24 is within 20.0.0.0/8. Therefore (without the keyword order), packets within the range 20.1.1.0/24 match positive against cmap1 and are buffered in queue 7, though you intended for these packets to match positive against cmap2 and be buffered in queue 4. In cases where class-maps with overlapping ACL rules are applied to different queues, use the order keyword to specify the order in which you want to apply ACL rules.
CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] The default is permit. The optional seq keyword allows you to assign a sequence number to the route map instance. The default action is permit and the default sequence number starts at 10. When you use the keyword deny in configuring a route map, routes that meet the match filters are not redistributed. To view the configuration, use the show config command in ROUTE-MAP mode.
• set commands change the characteristics of routes, either adding something or specifying a level. When there are multiple match commands with the same parameter under one instance of route-map, Dell EMC Networking OS does a match between all of those match commands. If there are multiple match commands with different parameters, Dell EMC Networking OS does a match ONLY if there is a match among ALL the match commands.
• CONFIG-ROUTE-MAP mode match ip address prefix-list-name Match destination routes specified in a prefix list (IPv6). • CONFIG-ROUTE-MAP mode match ipv6 address prefix-list-name Match next-hop routes specified in a prefix list (IPv4). • CONFIG-ROUTE-MAP mode match ip next-hop {access-list-name | prefix-list prefix-list-name} Match next-hop routes specified in a prefix list (IPv6).
• set metric-type {external | internal | type-1 | type-2} Assign an IP address as the route’s next hop. • CONFIG-ROUTE-MAP mode set next-hop ip-address Assign an IPv6 address as the route’s next hop. • CONFIG-ROUTE-MAP mode set ipv6 next-hop ip-address Assign an ORIGIN attribute. • CONFIG-ROUTE-MAP mode set origin {egp | igp | incomplete} Specify a tag for the redistributed routes. • CONFIG-ROUTE-MAP mode set tag tag-value Specify a value as the route’s weight.
Example of the redistribute Command Using a Route Tag ! router rip redistribute ospf 34 metric 1 route-map torip ! route-map torip permit 10 match route-type internal set tag 34 ! Continue Clause Normally, when a match is found, set clauses are executed, and the packet is then forwarded; no more route-map modules are processed. If you configure the continue command at the end of a module, the next module (or a specified module) is processed even after a match is found.
Example of Denying Second and Subsequent Fragments DellEMC(conf)#ip access-list extended ABC DellEMC(conf-ext-nacl)#deny ip any 10.1.1.1/32 fragments DellEMC(conf-ext-nacl)#permit ip any 10.1.1.1/32 DellEMC(conf-ext-nacl) Layer 4 ACL Rules Examples The following examples show the ACL commands for Layer 4 packet filtering. Permit an ACL line with L3 information only, and the fragments keyword is present: If a packet’s L3 information matches the L3 information in the ACL line, the packet's FO is checked.
A standard IP ACL uses the source IP address as its match criterion. 1. Enter IP ACCESS LIST mode by naming a standard IP access list. CONFIGURATION mode ip access-list standard access-listname 2. Configure a drop or forward filter. CONFIG-STD-NACL mode seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte] [dscp] [order] [monitor [session-id]] [fragments] NOTE: When assigning sequence numbers to filters, keep in mind that you might need to insert a new filter.
they were configured (for example, the first filter was given the lowest sequence number). The show config command in IP ACCESS LIST mode displays the two filters with the sequence numbers 5 and 10. DellEMC(config-route-map)#ip access standard acl1 DellEMC(config-std-nacl)#permit 10.1.0.0/16 monitor 177 DellEMC(config-std-nacl)#show config ! ip access-list standard acl1 seq 5 permit 10.1.0.
ip access-list extended vv seq 25 permit tcp any eq 40 any eq 33 seq 30 permit tcp any eq 33 any eq 43 seq 35 permit tcp any range www 194 any eq 101 seq 40 permit udp any eq 434 any gt mobile-ip seq 45 deny udp any eq 53 any lt ntp Configure Filters, TCP Packets To create a filter for TCP packets with a specified sequence number, use the following commands. 1. Create an extended IP ACL and assign it a unique name. CONFIGURATION mode ip access-list extended access-list-name 2.
• {deny | permit} tcp {source mask] | any | host ip-address}} [count [byte]] [order] [monitor [session-id]] [fragments] Configure a deny or permit filter to examine UDP packets. CONFIG-EXT-NACL mode {deny | permit} udp {source mask | any | host ip-address}} [count [byte]] [order] [monitor [session-id]] [fragments] When you use the log keyword, the CP logs details about the packets that match.
Assign an IP ACL to an Interface To pass traffic through a configured IP ACL, assign that ACL to a physical interface, a port channel interface, or a VLAN. The IP ACL is applied to all traffic entering a physical or port channel interface and the traffic is either forwarded or dropped depending on the criteria and actions specified in the ACL. The same ACL may be applied to different interfaces and that changes its functionality.
Configure Ingress ACLs Ingress ACLs are applied to interfaces and to traffic entering the system. These system-wide ACLs eliminate the need to apply ACLs onto each interface and achieves the same results. By localizing target traffic, it is a simpler implementation. To create an ingress ACL, use the ip access-group command in EXEC Privilege mode. The example shows applying the ACL, rules to the newly created access group, and viewing the access list.
DellEMC(config-ext-nacl)#deny icmp any any DellEMC(config-ext-nacl)#permit 1.1.1.2 DellEMC(config-ext-nacl)#end DellEMC#show ip accounting access-list ! Extended Ingress IP access list abcd on gigethernet 0/0 seq 5 permit tcp any any seq 10 deny icmp any any seq 15 permit 1.1.1.
• • To deny routes with a mask less than /24, enter deny x.x.x.x/x le 24. To permit routes with a mask greater than /20, enter permit x.x.x.x/x ge 20. The following rules apply to prefix lists: • • • A prefix list without any permit or deny filters allows all routes. An “implicit deny” is assumed (that is, the route is dropped) for all route prefixes that do not match a permit or deny filter in a configured prefix list. After a route matches a filter, the filter’s action is applied.
NOTE: The last line in the prefix list Juba contains a “permit all” statement. By including this line in a prefix list, you specify that all routes not matching any criteria in the prefix list are forwarded. To delete a filter, use the no seq sequence-number command in PREFIX LIST mode.If you are creating a standard prefix list with only one or two filters, you can let Dell EMC Networking OS assign a sequence number based on the order in which the filters are configured.
The following example shows the show ip prefix-list summary command. DellEMC> DellEMC>show ip prefix summary Prefix-list with the last deletion/insertion: filter_ospf ip prefix-list filter_in: count: 3, range entries: 3, sequences: 5 - 10 ip prefix-list filter_ospf: count: 4, range entries: 1, sequences: 5 - 10 DellEMC> Applying a Prefix List for Route Redistribution To pass traffic through a configured prefix list, use the prefix list in a route redistribution command.
To view the configuration, use the show config command in ROUTER OSPF mode, or the show running-config ospf command in EXEC mode. DellEMC(conf-router_ospf)#show config ! router ospf 34 network 10.2.1.1 255.255.255.255 area 0.0.0.1 distribute-list prefix awe in DellEMC(conf-router_ospf)# ACL Remarks While defining ACL rules, you can optionally include a remark to make the ACLs more descriptive. You can include a remark with a maximum of 80 characters in length.
The remark number is optional. The following is an example of removing a remark.
resequence prefix-list {ipv4 | ipv6} {prefix-list-name StartingSeqNum Step-to-Increment} Remarks and rules that originally have the same sequence number have the same sequence number after you apply the resequence command. The example shows the resequencing of an IPv4 access-list beginning with the number 2 and incrementing by 2. DellEMC(config-ext-nacl)# show config ! ip access-list extended test remark 4 XYZ remark 5 this remark corresponds to permit any host 1.1.1.1 seq 5 permit ip any host 1.1.1.
Implementation Information ACLs and prefix lists can only drop or forward the packet or traffic. Route maps process routes for route redistribution. For example, a route map can be called to filter only specific routes and to add a metric. Route maps also have an “implicit deny.” Unlike ACLs and prefix lists; however, where the packet or traffic is dropped, in route maps, if a route does not match any of the route map conditions, the route is not redistributed.
The show monitor session session-id command displays the Type field in the output, which indicates whether a particular session is enabled for flow-monitoring. Example Output of the show Command DellEMC# show monitor session 1 SessID Source Destination Dir TTL Drop Rate Gre-Protocol FcMonitor ------ ----------------------- -------------- --------1 Te 1/2/1 remote-ip rx 0 No N/A N/A yes DellEMC# Mode Source IP Dest IP DSCP ---- --------- -------- ---- Port 0.0.0.0 0.0.0.
DellEMC(conf)#ip access-list ext testflow DellEMC(config-ext-nacl)#seq 5 permit icmp any any count bytes monitor DellEMC(config-ext-nacl)#seq 10 permit ip 102.1.1.
Dell(conf-if-te-0/4)#ip mirror-access-group acl3 in To view which IP mirror-access-group is applied to an interface, use the show config command in INTERFACE mode, or use the show running-config command in EXEC mode.
7 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 9. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state. Refer to BFD Sessions. Flag A bit that indicates packet function.
Field Description Your Discriminator A random number generated by the remote system to identify the session. Discriminator values are necessary to identify the session to which a control packet belongs because there can be many sessions running on a single interface. Desired Min TX Interval The minimum rate at which the local system would like to send control packets to the remote system.
State Description Up Both systems are exchanging control packets. The session is declared down if: • • • A control packet is not received within the detection time. Sufficient echo packets are lost. Demand mode is active and a control packet is not received in response to a poll packet. BFD Three-Way Handshake A three-way handshake must take place between the systems that participate in the BFD session.
Session State Changes The following illustration shows how the session state on a system changes based on the status notification it receives from the remote system. For example, if a session on a system is down and it receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 11.
• Configuring Protocol Liveness Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol. Without BFD, if the remote system fails, the local system does not remove the connected route until the first failed attempt to send a packet.
TX: 100ms, RX: 100ms, Multiplier: 4 Role: Passive Delete session on Down: False Client Registered: CLI Uptime: 00:09:06 Statistics: Number of packets received from neighbor: 4092 Number of packets sent to neighbor: 4093 Number of state changes: 1 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 7 Disabling and Re-Enabling BFD BFD is enabled on all interfaces by default, though sessions are not created unless explicitly configured.
Establishing Sessions for Static Routes for Default VRF Sessions are established for all neighbors that are the next hop of a static route on the default VRF. Figure 12. Establishing Sessions for Static Routes To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route.
ip route bfd vrf vrf2 ip route bfd vrf vrf1 prefix-list p4_le The following example shows that sessions are created for static routes for the default VRF. Dell#show bfd neighbors * Ad Dn B C I O O3 R M V VT - Active session role Admin Down BGP CLI ISIS OSPF OSPFv3 Static Route (RTM) MPLS VRRP Vxlan Tunnel LocalAddr * 11.1.1.1 RemoteAddr 11.1.1.2 Interface Te 1/1/1 State Rx-int Tx-int Mult Clients Up 200 200 3 R * 21.1.1.1 21.1.1.2 Vl 100 Up 200 200 3 R * 31.1.1.1 31.1.1.
For more information on prefix lists, see IP Prefix Lists. To enable BFD sessions on specific neighbors, perform the following steps: Enter the following command to enable BFD session on specific next-hop neighbors: CONFIGURATION ip route bfd prefix-list prefix-list-name The BFD session is established for the next-hop neighbors that are specified in the prefix-list. • • • • • • • • • The absence of a prefix-list causes BFD sessions to be enabled on all the eligible next-hop neighbors.
Related Configuration Tasks • • Changing IPv6 Static Route Session Parameters Disabling BFD for Static Routes Establishing Sessions for IPv6 Static Routes for Default VRF Sessions are established for all neighbors that are the next hop of a static route on the default VRF. To establish a BFD session, use the following command. • Establish BFD sessions for all IPv6 neighbors that are the next hop of a static route.
I O O3 R M V VT - ISIS OSPF OSPFv3 Static Route (RTM) MPLS VRRP Vxlan Tunnel LocalAddr * 11::1 RemoteAddr 11::2 Interface Te 1/1/1 State Rx-int Tx-int Mult Clients Up 200 200 3 R * 21::1 21::2 Vl 100 Up 200 200 3 R * 31::1 31::2 Vl 101 Up 200 200 3 R The following example shows that sessions are created for static routes for the nondefault VRFs.
Related Configuration Tasks • • Changing OSPF Session Parameters Disabling BFD for OSPF Establishing Sessions with OSPF Neighbors for the Default VRF BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 13.
To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients * 2.2.2.2 2.2.2.1 Te 2/1/1 Up 100 100 3 O * 2.2.3.1 2.2.3.
LocalAddr * 10.1.3.2 RemoteAddr 10.1.3.1 Interface State Rx-int Tx-int Mult Clients Te 1/3/1 Up 300 250 3 C show bfd neighbors * Ad Dn B C I O O3 R M V VT - Active session role Admin Down BGP CLI ISIS OSPF OSPFv3 Static Route (RTM) MPLS VRRP Vxlan Tunnel LocalAddr * 5.1.1.1 RemoteAddr 5.1.1.2 Interface Po 30 State Rx-int Tx-int Mult Up 200 200 3 Clients O * 6.1.1.1 6.1.1.2 Vl 30 Up 200 200 3 O * 7.1.1.1 7.1.1.
Neighbor Discriminator: 3 Local Addr: 5.1.1.1 Local MAC Addr: 00:a0:c9:00:00:02 Remote Addr: 5.1.1.
Number of state changes: 1 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 4 DellEMC# show bfd neighbors detail Session Discriminator: 1 Neighbor Discriminator: 1 Local Addr: 10.1.3.2 Local MAC Addr: 00:01:e8:02:15:0e Remote Addr: 10.1.3.
ip ospf bfd all-neighbors disable Configure BFD for OSPFv3 BFD for OSPFv3 provides support for IPV6. Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors. Related Configuration Tasks • • Changing OSPFv3 Session Parameters Disabling BFD for OSPFv3 Establishing Sessions with OSPFv3 Neighbors You can establish BFD sessions with all OSPFv3 neighbors at once or with all neighbors out of a specific interface.
• bfd enable Establish sessions with all OSPFv3 neighbors in a specific VRF. • ROUTER-OSPFv3 mode bfd all-neighbors Establish sessions with the OSPFv3 neighbors on a single interface in a specific VRF. • INTERFACE mode ipv6 ospf bfd all-neighbors To disable BFD on a specific OSPFv3 enabled interface, use the ipv6 ospf bfd all-neighbors disable command. You can also use the no bfd enable command to disable BFD on a specific interface.
Changing OSPFv3 Session Parameters Configure BFD sessions with default intervals and a default role. The parameters that you can configure are: desired tx interval, required min rx interval, detection multiplier, and system role. Configure these parameters for all OSPFv3 sessions or all OSPFv3 sessions on a particular interface. If you change a parameter globally, the change affects all OSPFv3 neighbors sessions.
Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 14. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. • ROUTER-ISIS mode bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface.
Changing IS-IS Session Parameters BFD sessions are configured with default intervals and a default role. The parameters that you can configure are: Desired TX Interval, Required Min RX Interval, Detection Multiplier, and system role. These parameters are configured for all IS-IS sessions or all IS-IS sessions out of an interface. If you change a parameter globally, the change affects all IS-IS neighbors sessions.
Figure 15. Establishing Sessions with BGP Neighbors The sample configuration shows alternative ways to establish a BFD session with a BGP neighbor: • • By establishing BFD sessions with all neighbors discovered by BGP (the bfd all-neighbors command). By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peer-group-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays.
2. Specify the AS number and enter ROUTER BGP configuration mode. CONFIGURATION mode router bgp as-number 3. Add a BGP neighbor or peer group in a remote AS. CONFIG-ROUTERBGP mode neighbor {ip-address | peer-group name} remote-as as-number 4. Enable the BGP neighbor. CONFIG-ROUTERBGP mode neighbor {ip-address | peer-group-name} no shutdown 5. Add a BGP neighbor or peer group in a remote AS. CONFIG-ROUTERBGP mode neighbor {ipv6-address | peer-group name} remote-as as-number 6. Enable the BGP neighbor.
3. Specify the address family as IPv4. CONFIG-ROUTERBGP mode address-family ipv4 vrf vrf-name 4. Add an IPv4 BGP neighbor or peer group in a remote AS. CONFIG-ROUTERBGP_ADDRESSFAMILY mode neighbor {ip-address | peer-group name} remote-as as-number 5. Enable the BGP neighbor. CONFIG-ROUTERBGP_ADDRESSFAMILY mode neighbor {ip-address | peer-group-name} no shutdown 6. Add an IPv6 BGP neighbor or peer group in a remote AS.
Disabling BFD for BGP You can disable BFD for BGP. To disable a BFD for BGP session with a specified neighbor, use the first command. To remove the disabled state of a BFD for BGP session with a specified neighbor, use the second command. The BGP link with the neighbor returns to normal operation and uses the BFD session parameters globally configured with the bfd allneighbors command or configured for the peer group to which the neighbor belongs. • Disable a BFD for BGP session with a specified neighbor.
* 2.2.2.3 * 3.3.3.3 2.2.2.2 3.3.3.2 Te 1/2/1 Te 1/3/1 Up Up 200 200 200 200 3 3 B B The following example shows viewing BFD neighbors with full detail. The bold lines show the BFD session parameters: TX (packet transmission), RX (packet reception), and multiplier (maximum number of missed packets). R2# show bfd neighbors detail Session Discriminator: 9 Neighbor Discriminator: 10 Local Addr: 1.1.1.3 Local MAC Addr: 00:01:e8:66:da:33 Remote Addr: 1.1.1.
1.1.1.2 2.2.2.2 3.3.3.2 1 1 1 282 273 282 281 273 281 0 0 0 0 0 0 0 (0) 0 00:38:12 04:32:26 00:38:12 0 0 0 The following example shows viewing BFD information for a specified neighbor. The bold lines show the message displayed when you enable a BFD session with different configurations: • Message displays when you enable a BFD session with a BGP neighbor that inherits the global BFD session settings configured with the global bfd all-neighbors command.
Peer active in peer-group outbound optimization ... Configure BFD for VRRP When using BFD with VRRP, the VRRP protocol registers with the BFD manager on the route processor module (RPM). BFD sessions are established with all neighboring interfaces participating in VRRP. If a neighboring interface fails, the BFD agent on the line card notifies the BFD manager, which in turn notifies the VRRP protocol that a link state change occurred. Configuring BFD for VRRP is a three-step process: 1. Enable BFD globally.
Establishing VRRP Sessions on VRRP Neighbors The master router does not care about the state of the backup router, so it does not participate in any VRRP BFD sessions. VRRP BFD sessions on the backup router cannot change to the UP state. Configure the master router to establish an individual VRRP session the backup router. To establish a session with a particular VRRP neighbor, use the following command. • Establish a session with a particular VRRP neighbor.
Disabling BFD for VRRP If you disable any or all VRRP sessions, the sessions are torn down. A final Admin Down control packet is sent to all neighbors and sessions on the remote system change to the Down state. To disable all VRRP sessions on an interface, sessions for a particular VRRP group, or for a particular VRRP session on an interface, use the following commands. • Disable all VRRP sessions on an interface. • INTERFACE mode no vrrp bfd all-neighbors Disable all VRRP sessions in a VRRP group.
8 Border Gateway Protocol (BGP) Border Gateway Protocol (BGP) is an interdomain routing protocol that manages routing between edge routers. BGP uses an algorithm to exchange routing information between switches enabled with BGP. BGP determines a path to reach a particular destination using certain attributes while avoiding routing loops. BGP selects a single path as the best path to a destination network or host. You can also influence BGP to select different path by altering some of the BGP attributes.
Figure 17. BGP Topology with autonomous systems (AS) BGP version 4 (BGPv4) supports classless interdomain routing (CIDR) and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 18. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. AS4 Number Representation Dell EMC Networking OS supports multiple representations of 4-byte AS numbers: asplain, asdot+, and asdot. NOTE: The ASDOT and ASDOT+ representations are supported only with the 4-Byte AS numbers feature. If 4-Byte AS numbers are not implemented, only ASPLAIN representation is supported.
• AS Numbers larger than 65535 is represented using ASDOT notation as .. For example: AS 65546 is represented as 1.10. ASDOT representation combines the ASPLAIN and ASDOT+ representations. AS numbers less than 65536 appear in integer format (asplain); AS numbers equal to or greater than 65536 appear in the decimal format (asdot+). For example, the AS number 65526 appears as 65526 and the AS number 65546 appears as 1.10.
DellEMC(conf-router_bgp)#no bgp four-octet-as-support DellEMC(conf-router_bgp)#sho conf ! router bgp 100 neighbor 172.30.1.250 local-as 65057 DellEMC(conf-router_bgp)#do show ip bgp BGP table version is 28093, local router ID is 172.30.1.57 Four-Byte AS Numbers You can use the 4-Byte (32-bit) format when configuring autonomous system numbers (ASNs). The 4-Byte support is advertised as a new BGP capability (4-BYTE-AS) in the OPEN message.
State Description If that transition is not successful, BGP resets the ConnectRetry timer and transitions to the Active state when the timer expires. Active The router resets the ConnectRetry timer to zero and returns to the Connect state. OpenSent After successful OpenSent transition, the router sends an Open message and waits for one in return. OpenConfirm After the Open message parameters are agreed between peers, the neighbor relation is established and is in the OpenConfirm state.
mode, Dell EMC Networking OS compares MED between the adjacent paths within an AS group because all paths in the AS group are from the same AS. NOTE: The bgp bestpath as-path multipath-relax command is disabled by default, preventing BGP from loadbalancing a learned route across two or more eBGP peers. To enable load-balancing across different eBGP peers, enable the bgp bestpath as-path multipath-relax command.
c. the paths were received from IBGP or EBGP neighbor respectively. 10. If the bgp bestpath router-id ignore command is enabled and: a. if the Router-ID is the same for multiple paths (because the routes were received from the same route) skip this step. b. if the Router-ID is NOT the same for multiple paths, prefer the path that was first received as the Best Path. The path selection algorithm returns without performing any of the checks detailed here. 11.
Figure 20. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path. MED is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria. One AS assigns the MED a value and the other AS uses that value to decide the preferred path.
Figure 21. Multi-Exit Discriminators NOTE: Configuring the set metric-type internal command in a route-map advertises the IGP cost as MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost. If the outbound route-map uses MED, it overwrites IGP MED. Origin The origin indicates the origin of the prefix, or how the prefix came into BGP. There are three origin codes: IGP, EGP, INCOMPLETE.
Example of Viewing AS Paths DellEMC#show ip bgp paths Total 30655 Paths Refcount Metric Path 3 18508 701 3549 19421 i 3 18508 701 7018 14990 i 3 18508 209 4637 1221 9249 9249 i 2 18508 701 17302 i 26 18508 209 22291 i 75 18508 209 3356 2529 i 2 18508 209 1239 19265 i 1 18508 701 2914 4713 17935 i 162 18508 209 i 2 18508 701 19878 ? 31 18508 209 18756 i 2 18508 209 7018 15227 i 10 18508 209 3356 13845 i 3 18508 209 701 6347 7781 i 1 18508 701 3561 9116 21350 i Next Hop The next hop is the IP address used to
IPv4 and IPv6 address family The IPv4 address family configuration in Dell EMC Networking OS is used for identifying routing sessions for protocols that use IPv4 address. You can specify multicast within the IPv4 address family. The default of address family configuration is IPv4 unicast. You can configure the VRF instances for IPv4 address family configuration. The IPv6 address family configuration is used for identifying routing sessions for protocols that use IPv6 address.
Item Default reuse = 750 suppress = 2000 max-suppress-time = 60 minutes Distance external distance = 20 internal distance = 200 local distance = 200 Timers keepalive = 60 seconds holdtime = 180 seconds Add-path Disabled Implement BGP with Dell EMC Networking OS The following sections describe how to implement BGP on Dell EMC Networking OS.
Ignore Router-ID in Best-Path Calculation You can avoid unnecessary BGP best-path transitions between external paths under certain conditions. The bgp bestpath routerid ignore command reduces network disruption caused by routing and forwarding plane changes and allows for faster convergence. AS Number Migration With this feature you can transparently change the AS number of an entire BGP network and ensure that the routes are propagated throughout the network while the migration is in progress.
BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances support for BGP management information base (MIB) with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page.
Configuration Information The software supports BGPv4 as well as the following: • • • • deterministic multi-exit discriminator (MED) (default) a path with a missing MED is treated as worst path and assigned an MED value of (0xffffffff) the community format follows RFC 1998 delayed configuration (the software at system boot reads the entire configuration file prior to sending messages to start BGP peer sessions) The following are not yet supported: • • auto-summarization (the default is no auto-summary) s
CONFIGURATION mode router bgp as-number • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format). Only one AS is supported per system. NOTE: If you enter a 4-Byte AS number, 4-Byte AS support is enabled automatically. 2. Add a BGP neighbor or peer and AS number.
NOTE: The showconfig command in CONFIGURATION ROUTER BGP mode gives the same information as the show running-config bgp command. The following example displays two neighbors: one is an external internal BGP neighbor and the second one is an internal BGP neighbor. The first line of the output for each neighbor displays the AS number and states whether the link is an external or internal (shown in bold). The third line of the show ip bgp neighbors output contains the BGP State.
The following example shows the show ip bgp summary command output (4–byte AS number displays). R2#show ip bgp summary BGP router identifier 1.1.1.1, local 80000 BGP local RIB : Routes to be Added 0, Replaced 0, Withdrawn 0 1 neighbor(s) using 40960 bytes of memory Neighbor 20.20.20.1 AS 200 MsgRcvd 0 MsgSent 0 TblVer 0 InQ 0 OutQ Up/Down State/Pfx 0 00:00:00 0 Changing a BGP router ID BGP uses the configured router ID to identify the devices in the network.
• Enable ASPLAIN AS Number representation. • CONFIG-ROUTER-BGP mode bgp asnotation asplain NOTE: ASPLAIN is the default method Dell EMC Networking OS uses and does not appear in the configuration display. Enable ASDOT AS Number representation. • CONFIG-ROUTER-BGP mode bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ The following example shows the bgp asnotation asplain command output.
• Enter the router configuration mode and the AS number. • CONFIG mode router bgp as-number Add the IP address of the neighbor for the specified autonomous system. • CONFIG-ROUTER-BGP mode neighbor {ip-address | ipv6–address | peer-group-name} remote-as as-number Enable the neighbor. • CONFIG-ROUTERBGP mode neighbor ip-address | ipv6-address | peer-group-name no shutdown Specify the IPv4 address family configuration.
To support your own IP addresses, interfaces, names, and so on, you can copy and paste from these examples to your CLI. Be sure that you make the necessary changes. Example-Configuring BGP routing between peers Example of enabling BGP in Router A Following is an example to enable BGP configuration in the router A. RouterA# configure terminal RouterA(conf)# router bgp 40000 RouterA(conf-router_bgp)# bgp router-id 10.1.1.99 RouterA(conf-router_bgp)# timers bgp 80 130 RouterA(conf-router_bgp)# neighbor 192.
• • • • • • • You must create a peer group first before adding the neighbors in the peer group. If you remove any configuration parameters from a peer group, it will apply to all the neighbors configured under that peer group. If you have not configured a parameter for an individual neighbor in the peer group, the neighbor uses the value configured in the peer group. If you reset any parameter for an individual neighbor, it will override the value set in the peer group.
• • • • • • neighbor neighbor neighbor neighbor neighbor neighbor distribute-list out filter-list out next-hop-self route-map out route-reflector-client send-community A neighbor may keep its configuration after it was added to a peer group if the neighbor’s configuration is more specific than the peer group’s and if the neighbor’s configuration does not affect outgoing updates.
The following illustration shows the configurations described on the following examples. These configurations show how to create BGP areas using physical and virtual links. They include setting up the interfaces and peers groups with each other. Figure 24. BGP peer group example configurations Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0 R1(conf-if-lo-0)#ip address 192.168.128.1/32 R1(conf-if-lo-0)#no shutdown R1(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.
R1(conf-router_bgp)#neighbor 192.168.128.2 no shut R1(conf-router_bgp)#neighbor 192.168.128.2 update-source loop 0 R1(conf-router_bgp)#neighbor 10.0.3.33 remote 100 R1(conf-router_bgp)#neighbor 10.0.3.33 no shut R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 update-source Loopback 0 neighbor 10.0.3.33 no shutdown neighbor 10.0.3.
R3(conf-if-te-3/21/1)#show config ! interface TengigabitEthernet 3/21/1 ip address 10.0.2.3/24 no shutdown R3(conf-if-te-3/21/1)# R3(conf-if-te-3/21/1)#router bgp 100 R3(conf-router_bgp)#show config ! router bgp 100 R3(conf-router_bgp)#neighbor 10.0.3.31 remote 99 R3(conf-router_bgp)#neighbor 10.0.3.31 no shut R3(conf-router_bgp)#neighbor 10.0.2.2 remote 99 R3(conf-router_bgp)#neighbor 10.0.2.2 no shut R3(conf-router_bgp)#show config ! router bgp 100 neighbor 10.0.3.31 remote 99 neighbor 10.0.3.
R2(conf-router_bgp)# neighbor 192.168.128.1 no shut R2(conf-router_bgp)# neighbor 192.168.128.3 peer BBB R2(conf-router_bgp)# neighbor 192.168.128.3 no shut R2(conf-router_bgp)#show conf ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.1 remote-as 99 neighbor 192.168.128.1 peer-group CCC neighbor 192.168.128.1 update-source Loopback 0 neighbor 192.168.128.1 no shutdown neighbor 192.168.128.
Advanced BGP configuration tasks The following sections describe how to configure the advanced (optional) BGP configuration tasks. Route-refresh and Soft-reconfiguration BGP soft-reconfiguration allows for faster and easier route changing. Changing routing policies typically requires a reset of BGP sessions (the TCP connection) for the policies to take effect. Such resets cause undue interruption to traffic due to hard reset of the BGP cache and the time it takes to re-establish the session.
Route-refresh This section explains how the soft-reconfiguration and route-refresh works. Soft-reconfiguration has to be configured explicitly for a neighbor unlike route refresh, which is automatically negotiated between BGP peers when establishing a peer session. The route-refresh updates will be sent, only if the neighbor soft-reconfiguration inbound command is not configured in a BGP neighbor and when you do a soft reset using clear ip bgp {neighbor-address | peer-group-name} soft in command.
neighbor 20.1.1.2 no shutdown neighbor 20::2 remote-as 200 neighbor 20::2 no shutdown ! address-family ipv6 unicast redistribute connected neighbor 20::2 activate exit-address-family ! DellEMC(conf-router_bgp)#do clear ip bgp 20.1.1.2 soft in May 8 15:28:11 : BGP: 20.1.1.2 sending ROUTE_REFRESH AFI/SAFI (1/1) May 8 15:28:12 : BGP: 20.1.1.2 UPDATE rcvd packet len 56 May 8 15:28:12 : BGP: 20.1.1.2 rcvd UPDATE w/ attr: origin ?, path 200, nexthop 20.1.1.
Configuring BGP aggregate routes To create an aggregate route entry in the BGP routing table, use the following commands. The aggregate route is advertised from the autonomous system. • Enter the router configuration mode and the AS number for the specific BGP routing process. • CONFIG mode router bgp as-number Create an aggregate entry in the BGP routing table.
Following is the sample configuration to suppress the advertisement of specific aggregate routes to all neighbors. DellEMC# configure terminal DellEMC(conf)# router bgp 100 DellEMC(conf-router_bgp)# aggregate-address 10.1.1.0 255.255.255.0 summary-only DellEMC(conf-router_bgp)# exit DellEMC(conf)# Filtering BGP The following section describes the methods used to filter the updates received from BGP neighbors.
DellEMC(conf-router_bgp)#neigh AAA no shut DellEMC(conf-router_bgp)#show conf ! router bgp 99 neighbor AAA peer-group neighbor AAA no shutdown neighbor 10.155.15.2 remote-as 32 neighbor 10.155.15.2 shutdown DellEMC(conf-router_bgp)#neigh 10.155.15.
1. Create a prefix list and assign it a name. CONFIGURATION mode ip prefix-list prefix-name 2. Create multiple prefix list filters with a deny or permit action. CONFIG-PREFIX LIST mode seq sequence-number {deny | permit} {any | ip-prefix [ge | le] } • • ge: minimum prefix length to be matched. le: maximum prefix length to me matched. For information about configuring prefix lists, refer to Access Control Lists (ACLs). 3. Return to CONFIGURATION mode. CONFIG-PREFIX LIST mode exit 4. Enter ROUTER BGP mode.
For information about configuring route maps, see Access Control Lists (ACLs). 3. Return to CONFIGURATION mode. CONFIG-ROUTE-MAP mode exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Filter routes based on the criteria in the configured route map.
CONFIG-ROUTER-BGP mode neighbor {ip-address | ipv6-address | peer-group-name} filter-list as-path-name {in | out} If you assign an non-existent or empty AS-PATH ACL, the software allows all routes. To view all BGP path attributes in the BGP database, use the show ip bgp paths command in EXEC Privilege mode.
DellEMC(conf)# exit DellEMC# In the above example, add a BGP neighbor to the AS 400 and the route-map called route2 applied to inbound routes from the BGP neighbor at 10.10.10.1. A route map route2 is created with a permit clause and the route’s community attribute is matched to communities in community list 1. A community list 1 that permits routes with a communities attribute of 100. To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode.
fall-over enabled Update source set to Loopback 0 Peer active in peer-group outbound optimization For address family: IPv4 Unicast BGP table version 52, neighbor version 52 4 accepted prefixes consume 16 bytes Prefix advertised 0, denied 0, withdrawn 0 Connections established 6; dropped 5 Last reset 00:19:37, due to Reset by peer Notification History 'Connection Reset' Sent : 5 Recv: 0 Local host: 20.20.20.2, Local port: 65519 Foreign host: 10.10.10.
neighbor peer-group-name subnet subnet-number mask The peer group responds to OPEN messages sent on this subnet. 3. Enable the peer group. CONFIG-ROUTER-BGP mode neighbor peer-group-name no shutdown 4. Create and specify a remote peer for BGP neighbor. CONFIG-ROUTER-BGP mode neighbor peer-group-name remote-as as-number Only after the peer group responds to an OPEN message sent on the subnet does its BGP state change to ESTABLISHED.
The below example configuration shows how to enable the BGP graceful restart. DellEMC# configure terminal DellEMC(conf)# router bgp 400 DellEMC(conf-router_bgp)# bgp graceful-restart DellEMC(conf-router_bgp)# exit Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. You can configure the device to redistribute ISIS, OSPF, static, or directly connected routes into BGP process using the redistribute command.
1. Allow the advertisement of multiple paths (send, receive or both). CONFIG-ROUTER-BGP or CONFIG-ROUTER-BGP-AF mode bgp add-path [both | enable | receive | send] path-count Configure the following parameters: • • • • • both: Indicate that the system sends and accepts multiple paths from peers. enable: Indicate that the system enables add-path support for the node. send: Indicate that the system sends multiple paths to peers. receive: Indicate that the system accepts multiple paths from peers.
• • • • no-advertise: routes with the COMMUNITY attribute of NO_ADVERTISE. no-export: routes with the COMMUNITY attribute of NO_EXPORT. quote-regexp: then any number of regular expressions. The software applies all regular expressions in the list. regexp: then a regular expression. To view the configuration, use the show config command in CONFIGURATION COMMUNITY-LIST or CONFIGURATION EXTCOMMUNITY LIST mode or the show ip {community-lists | extcommunity-list} command in EXEC Privilege mode.
deny 14551:112 deny 701:667 deny 702:667 deny 703:667 deny 704:666 deny 705:666 deny 14551:666 DellEMC# Configure BGP attributes Following sections explain how to configure the BGP attributes such as MED, COMMUNITY, WEIGHT, and LOCAL_PREFERENCE. Changing MED Attributes By default, Dell EMC Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths received from different BGP neighbors or peers from the same AS for the same route.
Configure a community list by denying or permitting specific community numbers or types of community. • • • • • • community-number: use AA:NN format where AA is the AS number (2 or 4 Bytes) and NN is a value specific to that autonomous system. local-AS: routes with the COMMUNITY attribute of NO_EXPORT_SUBCONFED and are not sent to EBGP peers. no-advertise: routes with the COMMUNITY attribute of NO_ADVERTISE and are not advertised. no-export: routes with the COMMUNITY attribute of NO_EXPORT.
value: the range is from 0 to 4294967295. The default is 100. DellEMC# configure terminal DellEMC(conf)# router bgp 400 DellEMC(conf_router_bgp)# neighbor 10.10.10.1 remote-as 500 DellEMC(conf_router_bgp)# bgp default local-preference 150 DellEMC(conf_router_bgp)# exit In the above example configuration, the default LOCAL_PREFERENCE value is changed to 150 for all the updates from AS 500 to AS 400. The default value is 100.
If you do not use the all keyword, the next hop of only eBGP-learned routes is updated by the route reflector. If you use the all keyword, the next hop of both eBGP- and iBGP-learned routes are updated by the route reflector. Sets the next hop address. • CONFIG-ROUTE-MAP mode set next-hop ip-address If the set next-hop command is applied on the out-bound interface using a route map, it takes precedence over the neighbor next-hop-self command.
Route Reflectors Route reflectors reorganize the iBGP core into a hierarchy and allow some route advertisement rules. NOTE: Do not use route reflectors (RRs) in the forwarding path. In iBGP, hierarchal RRs maintaining forwarding plane RRs could create routing loops. Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector and its client peers form a route reflection cluster.
When you enter this command for the first time, the router configures as a route reflector and the specified BGP neighbors configure as clients in the route reflector cluster. When you remove all clients of a route reflector using the no neighbor route-reflectorclient command, the router no longer functions as a route reflector. When you enable a route reflector, Dell EMC Networking OS automatically enables route reflection to all clients.
• • suppress: the range is from 1 to 20000. This number is compared to the flapping route’s Penalty value. If the Penalty value is greater than the suppress value, the flapping route is no longer advertised (that is, it is suppressed). The default is 2000. • max-suppress-time: the range is from 1 to 255. The maximum number of minutes a route can be suppressed. The default is four times the half-life value. The default is 60 minutes. Clear all information or only information on a specific route.
To view which routes are dampened (non-active), use the show ip bgp dampened-routes command in EXEC Privilege mode. Changing BGP keepalive and hold timers BGP uses timers to control the activity of sending the keepalive messages to its neighbors or peers. Also, you can adjust the interval of how long the device has to wait for a keepalive messge from a neighbor before declaring the peer dead. To configure BGP timers, use either or both of the following commands.
CONFIG-ROUTER-BGP mode neighbors {ip-address | ipv6-address | peer-group-name} timers extended idle-holdtime • idle-holdtime: the range is from 1 to 32767. Time interval, in seconds, during which the peer remains in idle state. The default is 15 seconds. Configure idle-holdtime values for all BGP neighbors. CONFIG-ROUTER-BGP mode timers bgp extended idle holdtime idle-holdtime: the range is from 1 to 32767. Time interval, in seconds, during which the peer remains in idle state. The default is 15 seconds.
ROUTER-BGP Mode shutdown address-family-ipv6-unicast When you configure BGP, you must explicitly enable the BGP neighbors using the following commands: neighbor {ip-address | peer-group name} remote-as as-number neighbor {ip-address | peer-group-name} no shutdown For more information on enabling BGP, see Enabling BGP.
confederations appear as one AS. Within the confederation sub-AS, the IBGP neighbors are fully meshed and the MED, NEXT_HOP, and LOCAL_PREF attributes are maintained between confederations. To configure BGP confederations, use the following commands. • Specifies the confederation ID. CONFIG-ROUTER-BGP mode bgp confederation identifier as-number • • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte). Specifies which confederation sub-AS are peers.
DellEMC(conf-router_bgpv6_af)# neighbor 50.0.0.2 activate DellEMC(conf-router_bgp)# exit Following is the output of show ip bgp vrf vrf1 summary command for the above configuration. DellEMC#show ip bgp vrf vrf1 summary BGP router identifier 1.1.1.1, local AS number 100 BGP local RIB : Routes to be Added 0, Replaced 0, Withdrawn 0 1 neighbor(s) using 16384 bytes of memory Neighbor 50.0.0.
network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.
Enabling MBGP Configurations Multiprotocol BGP (MBGP) is an enhanced BGP that carries IP multicast routes. BGP carries two sets of routes: one set for unicast routing and one set for multicast routing. The routes associated with multicast routing are used by the protocol independent multicast (PIM) to build data distribution trees. Dell EMC Networking OS MBGP is implemented per RFC 1858. You can enable the MBGP feature per router and/or per peer/peer-group. The default is IPv4 Unicast routes.
DellEMC(conf-router_bgpv6_af)#neighbor 2001::1 activate DellEMC(conf-router_bgpv6_af)#exit Following is the output of show ip bgp ipv6 unicast summary command for the above configuration example. DellEMC#show ip bgp ipv6 unicast summary BGP router identifier 1.1.1.
BGP local RIB : Routes to be Added 0, Replaced 0, Withdrawn 0 3 neighbor(s) using 40960 bytes of memory Neighbor 20.20.20.2 30.30.30.1 2001::2 AS 200 20 200 MsgRcvd 10 0 40 MsgSent 20 0 45 TblVer 0 0 0 InQ 0 0 0 OutQ 0 0 0 Up/Down 00:06:11 00:00:00 00:03:14 State/Pfx 0 0 0 The same output will be displayed when using show ip bgp ipv4 unicast summary command. Following is the sample output of show ip bgp ipv4 multicast summary command. R1# show ip bgp ipv4 multicast summary BGP router identifier 1.
20.20.20.1 R2# 10 10 20 0 0 0 00:06:11 0 Following is the output of show ip bgp ipv6 unicast summary command for the above configuration example. R2#show ip bgp ipv6 unicast summary BGP router identifier 2.2.2.2, local AS number 200 BGP local RIB : Routes to be Added 0, Replaced 0, Withdrawn 0 2 neighbor(s) using 24576 bytes of memory Neighbor 20.20.20.
Following is the show running-config command output for the above configuration. DellEMC# show running-config bgp ! router bgp 655 bgp router-id 1.1.1.1 neighbor 10.1.1.2 remote-as 20 neighbor 10.1.1.2 auto-local-address neighbor 10.1.1.2 no shutdown ! address-family ipv6 unicast neighbor 10.1.1.2 activate exit-address-family ! Example configuration performed in R2 DellEMC# configure terminal DellEMC(conf)# router bgp 20 DellEMC(conf-router_bgp)# neighbor 10.1.1.
Debugging BGP To enable BGP debugging, use any of the following commands. • View all information about BGP, including BGP events, keepalives, notifications, and updates. • EXEC Privilege mode debug ip bgp [ip-address | peer-group peer-group-name] [in | out] View information about BGP route being dampened. • EXEC Privilege mode debug ip bgp dampening [in | out] View information about local BGP state changes and other BGP events.
Capabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) For address family: IPv4 Unicast BGP table version 1395, neighbor version 1394 Prefixes accepted 1 (consume 4 bytes), 0 withdrawn by peer Prefixes advertised 0, rejected 0, 0 withdrawn from peer Connections established 3; dropped 2 Last reset 00:00:12, due to Missing well known att
9 Content Addressable Memory (CAM) CAM Allocation CAM Allocation for Ingress To allocate the space for regions such has L2 ingress ACL, IPV4 ingress ACL, IPV6 ingress ACL, IPV4 QoS, L2 QoS, PBR, VRF ACL, and so forth, use the cam-acl command in CONFIGURATION mode. The CAM space is allotted in field processor (FP) blocks. The total space allocated must equal FP blocks. The following table lists the default CAM allocation settings.
Table 12. Additional Default CAM Allocation Settings Additional CAM Allocation Setting FCoE ACL (fcoeacl) 0 ISCSI Opt ACL (iscsioptacl) 0 You must enter the ipv6acl and vman-dual-qos allocations as a factor of 2 (2, 4, 6, 8, 10). All other profile allocations can use either even or odd numbered ranges. You can only have one odd number group when setting the CAM.
Example of the test cam-usage Command DellEMC#test cam-usage service-policy input test-cam-usage stack-unit 1 po 0 Stack-Unit| Portpipe|CAM Partition|Available CAM|Estimated CAM per Port|Status -----------------------------------------------------------------------------------2 | 0 |IPv4Flow |192 |3 |Allowed (64) DellEMC# View CAM Profiles To view the current CAM profile for the chassis and each component, use the show cam-profile command.
Ipv4Qos L2Qos L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : : : 2 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 2 2 0 0 -- Stack unit 0 -Current Settings(in block sizes) Next Boot(in block sizes) 1 block = 128 entries L2Acl : 6 4 Ipv4Acl : 4 2 Ipv6Acl : 0 0 Ipv4Qos : 2 2 L2Qos : 1 1 L2PT : 0 0 IpMacAcl : 0 0 VmanQos : 0 0 VmanDualQos : 0 0 EcfmAcl : 0 0 FcoeAcl : 0 0 iscsiOptAcl : 0 0 ipv4pbr : 0 2 vrfv4Acl : 0 2 Openflow : 0 0 fedgov
L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : 0 0 0 0 0 0 0 0 0 0 0 -- Stack unit 7 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 DellEMC# View CAM Usage View the amount of CAM space available, used, and remaining in each part
| | OUT-V6 ACL | | | OUT-L2 ACL | Codes: * - cam usage is above 90%. DellEMC# 158 206 | | 0 | 7 | 158 199 Configuring CAM Threshold and Silence Period This section describes how to configure CAM threshold and silence period between CAM threshold syslog warnings. The CAM threshold and silence period configuration is applicable only for Ingress L2, IPv4, IPv6 and Egress L2, IPv4, and IPv6 ACL CAM groups.
Old CAM Threshold New CAM Threshold Current CAM Usage Syslog 90 95 91 98 100 100 No syslog 95 80 10 No syslog 92 90 89 No syslog DellEMC(conf)#Nov 5 19:55:12 %S6000:0 %ACL_AGENT-4ACL_AGENT_CAM_USAGE_BELOW_THE_THRESHOLD: The cam-usage of Ipv4Acl cam region on stackunit 0 Portpipe 0 Pipeline 0 is below 95%.
Syslog Warning Upon 90 Percent Utilization of CAM CAM utilization includes both the L3_DEFIP and L3_DEFIP_PAIR_128 table entries to calculate the utilization. Syslog Warning for Discrepancies Between Configured Extended Prefixes An error message is displayed if the number of extended prefix entries is different from the configured value during bootup.
10 Control Plane Policing (CoPP) Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 28. CoPP Implemented Versus CoPP Not Implemented Topics: • Configure Control Plane Policing Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queue-based rate limiting is applied first.
Configuring CoPP for Protocols This section lists the commands necessary to create and enable the service-policies for CoPP. For complete information about creating ACLs and QoS rules, refer to Access Control Lists (ACLs) and Quality of Service (QoS). The basics for creating a CoPP service policy are to create a Layer 2, Layer 3, and/or an IPv6 ACL rule for the desired protocol type. Then, create a QoS input policy to rate-limit the protocol traffics according to the ACL.
DellEMC(conf)#ipv6 access-list ipv6-icmp cpu-qos DellEMC(conf-ipv6-acl-cpuqos)#permit icmp DellEMC(conf-ipv6-acl-cpuqos)#exit DellEMC(conf)#ipv6 access-list ipv6-vrrp cpu-qos DellEMC(conf-ipv6-acl-cpuqos)#permit vrrp DellEMC(conf-ipv6-acl-cpuqos)#exit The following example shows creating the QoS input policy.
2. Create an input policy-map to assign the QoS policy to the desired service queues.l. CONFIGURATION mode policy-map--input name cpu-qos service-queue queue-number qos-policy name 3. Enter Control Plane mode. CONFIGURATION mode control-plane-cpuqos 4. Assign a CPU queue-based service policy on the control plane in cpu-qos mode. Enabling this command sets the queue rates according to those configured.
Example of Viewing Queue Mapping DellEMC#show ip protocol-queue-mapping Protocol Src-Port Dst-Port TcpFlag Queue --------------- -------- ------- ----TCP (BGP) any/179 179/any _ Q6 UDP (DHCP) 67/68 68/67 _ Q6/Q5 UDP (DHCP-R) 67 67 _ Q6 TCP (FTP) any 21 _ Q6 ICMP any any _ Q6 IGMP any any _ Q7 TCP (MSDP) any/639 639/any _ Q6 UDP (NTP) any 123 _ Q6 OSPF any any _ Q7 PIM any any _ Q7 UDP (RIP) any 520 _ Q7 TCP (SSH) any 22 _ Q6 TCP (TELNET) any 23 _ Q6 VRRP any any _ Q7 DellEMC# EgPort Rate (kbps) ------ ----
11 Data Center Bridging (DCB) Data center bridging (DCB) refers to a set of enhancements to Ethernet local area networks used in data center environments, particularly with clustering and storage area networks.
Data center bridging satisfies the needs of the following types of data center traffic in a unified fabric: Traffic Description LAN traffic LAN traffic consists of many flows that are insensitive to latency requirements, while certain applications, such as streaming video, are more sensitive to latency. Ethernet functions as a best-effort network that may drop packets in the case of network congestion.
• • FCoE converged traffic with priority 3. iSCSI storage traffic with priority 4. In the Dell EMC Networking OS, PFC is implemented as follows: • • • • • • • • • • • • PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface. However, only four lossless queues are supported on an interface: one for Fibre Channel over Ethernet (FCoE) converged traffic and one for Internet Small Computer System Interface (iSCSI) storage traffic.
Traffic Groupings Description Group ID A 4-bit identifier assigned to each priority group. The range is from 0 to 7 configurable; 8 - 14 reservation and 15.0 - 15.7 is strict priority group.. Group bandwidth Percentage of available bandwidth allocated to a priority group. Group transmission selection algorithm (TSA) Type of queue scheduling a priority group uses. In Dell EMC Networking OS, ETS is implemented as follows: • ETS supports groups of 802.
Enabling Data Center Bridging DCB is automatically configured when you configure FCoE or iSCSI optimization. Data center bridging supports converged enhanced Ethernet (CEE) in a data center network. DCB is disabled by default. It must be enabled to support CEE. • • • • Priority-based flow control Enhanced transmission selection Data center bridging exchange protocol FCoE initialization protocol (FIP) snooping DCB processes virtual local area network (VLAN)-tagged packets and dot1p priority values.
• As a result, PFC and lossless port queues are disabled on 802.1p priorities, and all priorities are mapped to the same priority queue and equally share the port bandwidth. To change the ETS bandwidth allocation configured for a priority group in a DCB map, do not modify the existing DCB map configuration. Instead, first create a new DCB map with the desired PFC and ETS settings, and apply the new map to the interfaces to override the previous DCB map settings.
Leave a space between each priority group number. For example: priority-pgid 0 0 0 1 2 4 4 4 in which priority group 0 maps to dot1p priorities 0, 1, and 2; priority group 1 maps to dot1p priority 3; priority group 2 maps to dot1p priority 4; priority group 4 maps to dot1p priorities 5, 6, and 7. Dell EMC Networking OS Behavior: As soon as you apply a DCB policy with PFC enabled on an interface, DCBx starts exchanging information with PFC-enabled peers. The IEEE802.
show hardware pfc-nodrop-priority l2-dlf drops stack-unit stack-unit-number port-set portpipe DellEMC#show hardware pfc-nodrop-priority l2-dlf drops stack-unit 0 port-set 0 --------------------------------------------------Priority DropCount --------------------------------------------------0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 To clear the drop statistics, use the clear hardware pfc-nodrop-priority l2-dlf drops stack-unit stackunit-number port-set port-pipe command.
• • • • • • • • • For PFC to be applied, the configured priority traffic must be supported by a PFC peer (as detected by DCBx). If you apply a DCB map with PFC disabled (pfc off), you can enable link-level flow control on the interface using the flowcontrol rx on tx on command. To delete the DCB map, first disable link-level flow control. PFC is then automatically enabled on the interface because an interface is PFC-enabled by default.
Configuring PFC without a DCB Map In a network topology that uses the default ETS bandwidth allocation (assigns equal bandwidth to each priority), you can also enable PFC for specific dot1p-priorities on individual interfaces without using a DCB map. This type of DCB configuration is useful on interfaces that require PFC for lossless traffic, but do not transmit converged Ethernet traffic. Table 17.
Table 18. Configuring Lossless Queues on a Port Interface Step Task Command Command Mode 1 Enter INTERFACE Configuration mode. interface interface-type CONFIGURATION 2 Open a DCB map and enter DCB map configuration mode. dcb-map name INTERFACE 3 Disable PFC. no pfc mode on DCB MAP 4 Return to interface configuration mode.
be allocated for each priority and the pause or resume thresholds for the buffer. This method of configuration enables you to effectively manage and administer the behavior of lossless queues. Although the system contains of space for shared buffers, a minimum guaranteed buffer is provided to all the internal and external ports in the system for both unicast and multicast traffic. This minimum guaranteed buffer reduces the total available shared buffer to .
Table 19. Queue Assignments Internal-priority Queue 0 0 1 0 2 0 3 1 4 2 5 3 6 3 7 3 3. Dot1p->Queue Mapping Configuration is retained at the default value. 4. Interface Configurations on server connected ports. a. Enable DCB globally. DellEMC(conf)#dcb enable b. Apply PFC Priority configuration. Configure priorities on which PFC is enabled.
Performing PFC Using DSCP Bits Instead of 802.1p Bits Priority based Flow Control (PFC) is currently supported on Dell EMC Networking OS for tagged packets based on the packet Dot1p. In certain data center deployments, VLAN configuration is avoided on the servers and all packets from the servers are untagged. These packets will carry IP header and can be differentiated based on the DSCP fields they carry on the server facing switch ports.
Packet-Dot1p Queue 5 5 6 6 7 7 PFC and ETS Configuration Examples This section contains examples of how to configure and apply DCB policies on an interface. Using PFC to Manage Converged Ethernet Traffic To use PFC for managing converged Ethernet traffic, use the following command: dcb-map stack-unit all dcb-map-name Operations on Untagged Packets The below is example for enabling PFC for priority 2 for tagged packets. Priority (Packet Dot1p) 2 will be mapped to PG6 on PRIO2PG setting.
ETS Prerequisites and Restrictions The following prerequisites and restrictions apply when you configure ETS bandwidth allocation or queue scheduling. • • Configuring ETS bandwidth allocation or a queue scheduler for dot1p priorities in a priority group is applicable if the DCBx version used on a port is CIN (refer to Configuring DCBx).
If multiple lossful priorities are mapped to a single priority group (PG1) and lossless priorities to another priority group (PG0), then bandwidth split across lossful priorities is not even. ETS Operation with DCBx The following section describes DCBx negotiation with peer ETS devices. In DCBx negotiation with peer ETS devices, ETS configuration is handled as follows: • • • • ETS TLVs are supported in DCBx versions CIN, CEE, and IEEE2.5.
Dell(conf-if-te-0/1)#service-policy output test12 Configuring ETS in a DCB Map A switch supports the use of a DCB map in which you configure enhanced transmission selection (ETS) setting. To configure ETS parameters, you must apply a DCB map on an interface. ETS Configuration Notes ETS provides a way to optimize bandwidth allocation to outbound 802.1p classes of converged Ethernet traffic. Different traffic types have different service needs. Using ETS, you can create groups within an 802.
• • You can enable PFC on a maximum of two priority queues on an interface. If you configure more than one priority group as strict priority, the higher numbered priority queue is given preference when scheduling data traffic. Hierarchical Scheduling in ETS Output Policies ETS supports up to three levels of hierarchical scheduling.
• Configure Enhanced Transmission Selection DCBx supports the following versions: CIN, CEE, and IEEE2.5. Prerequisite: For DCBx, enable LLDP on all DCB devices. DCBx Operation DCBx performs the following operations: • • • • Discovers DCB configuration (such as PFC and ETS) in a peer device. Detects DCB mis-configuration in a peer device; that is, when DCB features are not compatibly configured on a peer device and the local switch.
On a configuration-source port, the link with a DCBx peer is enabled when the port receives a DCB configuration that can be internally propagated to other auto-configured ports. The configuration received from a DCBx peer is not stored in the switch’s running configuration. On a DCBx port that is the configuration source, all PFC and application priority TLVs are enabled. ETS recommend TLVs are disabled and ETS configuration TLVs are enabled.
• • • • • No other port is the configuration source. The port role is auto-upstream. The port is enabled with link up and DCBx enabled. The port has performed a DCBx exchange with a DCBx peer. The switch is capable of supporting the received DCB configuration values through either a symmetric or asymmetric parameter exchange. A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports.
DCBx Example The following figure shows how to use DCBx. The external 40GbE 40GbE ports on the base module (ports 33 and 37) of two switches are used for uplinks configured as DCBx autoupstream ports. The device is connected to third-party, top-of-rack (ToR) switches through 40GbE uplinks. The ToR switches are part of a Fibre Channel storage network. The internal ports (ports 1-32) connected to the 10GbE backplane are configured as auto-downstream ports. Figure 32.
PROTOCOL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.5} • • • cee: configures the port to use CEE (Intel 1.01). cin: configures the port to use Cisco-Intel-Nuova (DCBx 1.0). ieee-v2.5: configures the port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. 4. Configure the DCBx port role the interface uses to exchange DCB information.
[no] DCBx version {auto | cee | cin | ieee-v2.5} • • • auto: configures all ports to operate using the DCBx version received from a peer. cee: configures a port to use CEE (Intel 1.01). cin configures a port to use Cisco-Intel-Nuova (DCBx 1.0). ieee-v2.5: configures a port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. NOTE: To configure the DCBx port role the interfaces use to exchange DCB information, use the DCBx port-role command in INTERFACE Configuration mode (Step 3). 4.
DCBx Error Messages The following syslog messages appear when an error in DCBx operation occurs. LLDP_MULTIPLE_PEER_DETECTED: DCBx is operationally disabled after detecting more than one DCBx peer on the port interface. LLDP_PEER_AGE_OUT: DCBx is disabled as a result of LLDP timing out on a DCBx peer interface. DSM_DCBx_PEER_VERSION_CONFLICT: A local port expected to receive the IEEE, CIN, or CEE version in a DCBx TLV from a remote peer but received a different, conflicting DCBx version.
Command Output show interface port-type pfc statistics Displays counters for the PFC frames received and transmitted (by dot1p priority class) on an interface. You can use the show interface pfc statistics command even without enabling DCB on the system. show interface port-type ets {summary | detail} Displays the ETS configuration applied to egress traffic on an interface, including priority groups with priorities and bandwidth allocation.
PFC DCBx Oper status is Up State Machine Type is Feature TLV Tx Status is enabled PFC Link Delay 45556 pause quantams Application Priority TLV Parameters : -------------------------------------FCOE TLV Tx Status is disabled ISCSI TLV Tx Status is disabled Local FCOE PriorityMap is 0x8 Local ISCSI PriorityMap is 0x10 Remote FCOE PriorityMap is 0x8 Remote ISCSI PriorityMap is 0x8 DellEMC# show interfaces tengigabitethernet 1/4/1 pfc detail Interface TenGigabitEthernet 1/4/1 Admin mode is on Admin is enabled R
Fields Description State Machine Type Type of state machine used for DCBx exchanges of PFC parameters: • • Feature: for legacy DCBx versions Symmetric: for an IEEE version TLV Tx Status Status of PFC TLV advertisements: enabled or disabled. PFC Link Delay Link delay (in quanta) used to pause specified priority traffic. Application Priority TLV: FCOE TLV Tx Status Status of FCoE advertisements in application priority TLVs from local DCBx port: enabled or disabled.
1 2 3 4 5 6 7 4 0,1,2,5,6,7 25 50 - - - - - ETS ETS - Remote Parameters : ------------------Remote is disabled Local Parameters : -----------------Local is enabled PG-grp Priority# BW-% BW-COMMITTED BW-PEAK TSA % Rate(Mbps) Burst(KB) Rate(Mbps) Burst(KB) ---------------------------------------------------------------------------------0 3 25 ETS 1 4 25 ETS 2 0,1,2,5,6,7 50 ETS 3 4 5 6 7 Oper status is init ETS DCBX Oper status is Down Reason: Port Shutdown State Machine Type is Asymmetric Conf TLV
1 2 3 4 5 6 7 0% 0% 0% 0% 0% 0% 0% Priority# Bandwidth 0 13% 1 13% 2 13% 3 13% 4 12% 5 12% 6 12% 7 12% Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is disabled 0 Input Conf TLV Pkts, 0 Output Conf TLV 0 Input Traffic Class TLV Pkts, 0 Output Pkts ETS ETS ETS ETS ETS ETS ETS TSA ETS ETS ETS ETS ETS ETS ETS ETS Pkts, 0 Error Conf TLV Pkts Traffic Class TLV Pkts, 0 Error Traffic Class TLV The following table describes the show interface ets detail command fields.
Field Description ETS TLV Statistic: Output Conf TLV pkts Number of ETS Configuration TLVs transmitted. ETS TLV Statistic: Error Conf TLV pkts Number of ETS Error Configuration TLVs received. The following example shows the show stack-unit all stack-ports all pfc details command.
R-ETS Recommendation TLV enabled r-ETS Recommendation TLV disabled P-PFC Configuration TLV enabled p-PFC Configuration TLV disabled F-Application priority for FCOE enabled f-Application Priority for FCOE disabled I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled -----------------------------------------------------------------------------------------Interface TenGigabitEthernet 1/12/1 Remote Mac Address 00:01:e8:8a:df:a0 Port Role is Manual DCBx Operational Status is Enabled
Field Description DCBx Operational Status Operational status (enabled or disabled) used to elect a configuration source and internally propagate a DCB configuration. The DCBx operational status is the combination of PFC and ETS operational status. Configuration Source Specifies whether the port serves as the DCBx configuration source on the switch: true (yes) or false (no). Local DCBx Compatibility mode DCBx version accepted in a DCB configuration as compatible.
traffic to egress queues, take into account the default dot1p-queue assignments in the following table and the maximum number of two lossless queues supported on a port (refer to Configuring Lossless Queues). Although Dell EMC Networking OS allows you to change the default dot1p priority-queue assignments (refer to Setting dot1p Priorities for Incoming Traffic), DCB policies applied to an interface may become invalid if you reconfigure dot1pqueue mapping.
Figure 33. PFC and ETS Applied to LAN, IPC, and SAN Priority Traffic QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
The following describes the priority group-bandwidth assignment. Priority Group Bandwidth Assignment IPC 5% SAN 50% LAN 45% PFC and ETS Configuration Command Examples The following examples show PFC and ETS configuration commands to manage your data center traffic. 1. Enabling DCB DellEMC(conf)#dcb enable 2.
12 Dynamic Host Configuration Protocol (DHCP) DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators.
Option Number and Description Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS.
2. Servers unicast or broadcast a DHCPOFFER message in response to the DHCPDISCOVER that offers to the client values for the requested parameters. Multiple servers might respond to a single DHCPDISCOVER; the client might wait a period of time and then act on the most preferred offer. 3. The client broadcasts a DHCPREQUEST message in response to the offer, requesting the offered values. 4.
Configure the System to be a DHCP Server A DHCP server is a network device that has been programmed to provide network configuration parameters to clients upon request. Servers typically serve many clients, making host management much more organized and efficient. NOTE: If the management port is associated with any non-default VRF, then the ip address dhcp command does not work. The following table lists the key responsibilities of DHCP servers. Table 26.
Configuration Tasks To configure DHCP, an administrator must first set up a DHCP server and provide it with configuration parameters and policy information including IP address ranges, lease length specifications, and configuration data that DHCP hosts need. Configuring the Dell system to be a DHCP server is a three-step process: 1. Configuring the Server for Automatic Address Allocation 2.
dns-server address Using NetBIOS WINS for Address Resolution Windows internet naming service (WINS) is a name resolution service that Microsoft DHCP clients use to correlate host names to IP addresses within a group of networks. Microsoft DHCP clients can be one of four types of NetBIOS nodes: broadcast, peer-to-peer, mixed, or hybrid. 1. Specify the NetBIOS WINS name servers, in order of preference, that are available to Microsoft Dynamic Host Configuration Protocol (DHCP) clients.
EXEC Privilege mode. clear ip dhcp binding ip address Configure the System to be a DHCP Client A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP server. Implement the DHCP client functionality as follows: • The switch can obtain a dynamically assigned IP address from a DHCP server. A start-up configuration is not received. Use bare metal provisioning (BMP) to receive configuration parameters (Dell EMC Networking OS version and a configuration file).
To renew the lease time of the dynamically acquired IP, use the renew dhcp command on an interface already configured with a dynamic IP address. NOTE: To verify the currently configured dynamic IP address on an interface, use the show ip dhcp lease command. The show running-configuration command output only displays ip address dhcp. The currently assigned dynamic IP address does not display. To configure and view an interface as a DHCP client to receive an IP address, use the following commands. 1.
NOTE: Management routes added by the DHCP client include the specific routes to reach a DHCP server in a different subnet and the management route. DHCP Client Operation with Other Features The DHCP client operates with other Dell EMC Networking OS features, as the following describes. Stacking The DHCP client daemon runs only on the master unit and handles all DHCP packet transactions. It periodically synchronizes the lease file with the standby unit.
The following illustration depicts the topology in which routes are leaked between VRFs in the relay agent. VRF_1 VRF_2 DHCP Server --------------------- DHCP relay agent --------------------------- Client (10.0.0.1) (10.0.0.2) (20.0.0.2) (20.0.0.4) Configuring Route Leaking between VRFs on DHCP Relay Agent To configure route leaking between VRFs on DHCP relay agent, include the configuration similar to the following along with your DHCP relay configuration on your system.
ip prefix-list ip2 seq 5 permit 10.0.0.0/24 Non-default VRF configuration for DHCPv6 helper address The ipv6 helper-address command is enhanced to provide support for configuring VRF for DHCPv6 relay helper address. To forward DHCP packets between DHCP client and server if they are from different VRFs, you should configure route leak using route map between the VRFs. For more information on configuring route leak across VRF, see DHCP Relay when DHCP Server and Client are in Different VRFs.
Interface level DHCP relay source IPv4 or IPv6 configuration You can configure interface specific DHCP relay source IPv4 or IPv6 configuration. If the DHCP relay source interface is configured on the interface level, the DHCP relay forwards the packets from these interfaces to the DHCP server using the interface.
Dell(conf-if-vl-4)# tagged TenGigE 1/4 Dell(conf-if-vl-4)# ip helper-address vrf vrf1 100.0.0.1 Dell(conf-if-vl-4)# ipv6 helper-address vrf vrf1 100::1 Configure the System for User Port Stacking (Option 230) Set the stacking-option variable to provide stack-port detail on the DHCP server when you set the DHCP offer. A stack can be formed when the units are connected. Option 230 is the option for user port stacking. Use it to create up to eight stack groups.
• Assign IP addresses according to the relay agent. This prevents generating DHCP offers in response to requests from an unauthorized relay agent. The server echoes the option back to the relay agent in its response, and the relay agent uses the information in the option to forward a reply out the interface on which the request was received, rather than flooding it on the entire VLAN. The relay agent strips Option 82 from DHCP responses before forwarding them to the client.
and DHCPDECLINE packets are allowed so that the DHCP snooping table can decrease in size. After the table usage falls below the maximum limit of 4000 entries, new IP address assignments are allowed. NOTE: DHCP server packets are dropped on all non-trusted interfaces of a system configured for DHCP snooping. To prevent these packets from being dropped, configure ip dhcp snooping trust on the server-connected port.
ip dhcp snooping binding mac mac-address vlan-id vlan-id ip ip-address interface interfacetype interface-number lease lease-value If multiple IP addresses are expected for the same MAC address, repeat this step for all IP addresses. Adding a Static IPV6 DHCP Snooping Binding Table To add a static entry in the snooping database, use the following command. • Add a static entry in the snooping binding table.
Invalid Binding List of List of List of Binding Entry Entry lease expired Trust Ports DHCP Snooping Enabled Vlans DAI Trust ports : 0 : 0 :Te 1/4/1 :Vl 10 :Te 1/4/1 View the DHCP snooping binding table using the show ip dhcp snooping binding command. DellEMC#show ip dhcp snooping binding Codes : S - Static D - Dynamic IP Address MAC Address Expires(Sec) Type VLAN Interface ========================================================================= 10.1.1.254 00:00:a0:00:00:02 162 D Vl 200 Te 1/4/1 10.1.1.
View the DHCP snooping statistics with the show ipv6 dhcp snooping command. DellEMC#show ipv6 dhcp snooping binding Codes : S - Static D – Dynamic IPv6 Address MAC Address Expires(Sec) Type VLAN Interface ========================================================================= 11:11::22 11:22:11:22:11:22 120331 S Vl 100 Te 1/1/1 33::22 11:22:11:22:11:23 120331 S Vl 200 Te 1/1/1 333:22::22 11:22:11:22:11:24 120331 D Vl 300 Te 1/2/1 Debugging the IPv6 DHCP To debug the IPv6 DHCP, use the following command.
attacker’s MAC address and the gateway’s IP address. The client then thinks that the attacker is the gateway, and sends all internetbound packets to it. Likewise, the attacker sends the gateway an ARP message containing the attacker’s MAC address and the client’s IP address. The gateway then thinks that the attacker is the client and forwards all packets addressed to the client to it. As a result, the attacker is able to sniff all packets to and from the client.
The rate packet per second (pps) range is from 1 to 2048. The default is 15. The rate burst interval range is from 1 to 15 seconds. The default is 1. DellEMC# show running-config interface tengigabitethernet 1/10/1 interface TenGigabitEthernet 1/10/1 no ip address switchport arp inspection-limit rate 15 interval 1 no shutdown DellEMC# Bypassing the ARP Inspection You can configure a port to skip ARP inspection by defining the interface as trusted, which is useful in multi-switch environments.
• ip dhcp source-address-validation Enable IP source address validation with VLAN option. INTERFACE mode ip dhcp source-address-validation vlan vlan-id NOTE: Before enabling SAV With VLAN option, allocate at least one FP block to the ipmacacl CAM region. DHCP MAC Source Address Validation DHCP MAC source address validation (SAV) validates a DHCP packet’s source hardware address against the client hardware address field (CHADDR) in the payload.
deny access-list on TenGigabitEthernet 1/2/1 Total cam count 2 deny vlan 10 count (0 packets) deny vlan 20 count (0 packets) The following output of the show ip dhcp snooping source-address-validation discard-counters interface interface command displays the number of SAV dropped packets on a particular interface.
13 Equal Cost Multi-Path (ECMP) ECMP for Flow-Based Affinity ECMP for flow-based affinity includes link bundle monitoring. Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features. To adjust the ExaScale behavior to match TeraScale, use the following command. • Change the ExaScale hash-algorithm for LAG, ECMP, and NH-ECMP to match TeraScale. CONFIGURATION mode.
NOTE: You cannot separate LAG and ECMP, but you can use different algorithms across the chassis with the same seed. If LAG member ports span multiple port-pipes and line cards, set the seed to the same value on each port-pipe to achieve deterministic behavior. NOTE: If you remove the hash algorithm configuration, the hash seed does not return to the original factory default setting. To configure the hash algorithm seed, use the following command. • Specify the hash algorithm seed. CONFIGURATION mode.
ip ecmp-group path-fallback DellEMC(conf)#ip ecmp-group maximum-paths 3 User configuration has been changed. Save the configuration and reload to take effect DellEMC(conf)# Creating an ECMP Group Bundle Within each ECMP group, you can specify an interface. If you enable monitoring for the ECMP group, the utilization calculation is performed when the average utilization of the link-bundle (as opposed to a single link within the bundle) exceeds 60%. 1. Create a user-defined ECMP group bundle.
Support for /128 IPv6 and /32 IPv4 Prefixes in Layer 3 Host Table and LPM Table IPv6 enhancements utilize the capability on platform to program /128 IPv6 prefixes in LPM table and /32 IPv4 prefixes in Host table. Also host table provides ECMP support for destination prefixes in the hardware. The platform uses the hardware chip that supports this behavior and hence they can make use of this capability.
14 FIP Snooping The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a switch stack.
The following table lists the FIP functions. Table 29. FIP Functions FIP Function Description FIP VLAN discovery FCoE devices (ENodes) discover the FCoE VLANs on which to transmit and receive FIP and FCoE traffic. FIP discovery FCoE end-devices and FCFs are automatically discovered. Initialization FCoE devices learn ENodes from the FLOGI and FDISC to allow immediate login and create a virtual link with an FCoE switch.
Port-based ACLs These ACLs are applied on all three port modes: on ports directly connected to an FCF, server-facing ENode ports, and bridge-to-bridge links. Port-based ACLs take precedence over global ACLs. FCoE-generated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames. The following illustration shows a switch used as a FIP snooping bridge in a converged Ethernet network.
• Process FIP VLAN discovery requests and responses, advertisements, solicitations, FLOGI/FDISC requests and responses, FLOGO requests and responses, keep-alive packets, and clear virtual-link messages. FIP Snooping in a Switch Stack FIP snooping supports switch stacking as follows: • • • A switch stack configuration is synchronized with the standby stack unit. Dynamic population of the FCoE database (ENode, Session, and FCF tables) is synchronized with the standby stack unit.
• You must apply the CAM-ACL space for the FCoE region before enabling the FIP-Snooping feature. If you do not apply CAM-ACL space, the following error message is displayed: DellEMC(conf)#feature fip-snooping % Error: Cannot enable fip snooping. CAM Region not allocated for Fcoe. DellEMC(conf)# NOTE: Manually add the CAM-ACL space to the FCoE region as it is not applied by default.
Configure the FC-MAP Value You can configure the FC-MAP value to be applied globally by the switch on all or individual FCoE VLANs to authorize FCoE traffic. The configured FC-MAP value is used to check the FC-MAP value for the MAC address assigned to ENodes in incoming FCoE frames. If the FC-MAP value does not match, FCoE frames are dropped. A session between an ENode and an FCF is established by the switchbridge only when the FC-MAP value on the FCF matches the FC-MAP value on the FIP snooping bridge.
Configuring FIP Snooping You can enable FIP snooping globally on all FCoE VLANs on a switch or on an individual FCoE VLAN. By default, FIP snooping is disabled. To enable FCoE transit on the switch and configure the FCoE transit parameters on ports, follow these steps. 1. Configure FCoE. FCoE configuration: copy flash:/ CONFIG_TEMPLATE/ FCoE_DCB_Config running-config The configuration files are stored in the flash memory in the CONFIG_TEMPLATE file.
Command Output show fip-snooping statistics [interface vlan vlan-id| interface port-type port/slot | interface port-channel port-channel-number] Displays statistics on the FIP packets snooped on all interfaces, including VLANs, physical ports, and port channels. clear fip-snooping statistics [interface vlan vlan-id | interface port-type port/slot | interface port-channel port-channel-number] Clears the statistics on the FIP packets snooped on all VLANs, a specified VLAN, or a specified port interface.
The following example shows the show fip-snooping enode command. DellEMC# show fip-snooping enode Enode MAC Enode Interface FCF MAC VLAN FC-ID ----------------------- ---------- ----d4:ae:52:1b:e3:cd Te 1/11/1 54:7f:ee:37:34:40 100 62:00:11 The following table describes the show fip-snooping enode command fields. Table 33. show fip-snooping enode Command Description Field Description ENode MAC MAC address of the ENode. ENode Interface Slot/port number of the interface connected to the ENode.
Number of FCF Discovery Timeouts :0 Number of VN Port Session Timeouts :0 Number of Session failures due to Hardware Config :0 DellEMC(conf)# DellEMC# show fip-snooping statistics int tengigabitethernet 1/11/1 Number of Vlan Requests :1 Number of Vlan Notifications :0 Number of Multicast Discovery Solicits :1 Number of Unicast Discovery Solicits :0 Number of FLOGI :1 Number of FDISC :16 Number of FLOGO :0 Number of Enode Keep Alive :4416 Number of VN Port Keep Alive :3136 Number of Multicast Discovery Adver
Field Description Number of FLOGI Number of FIP-snooped FLOGI request frames received on the interface. Number of FDISC Number of FIP-snooped FDISC request frames received on the interface. Number of FLOGO Number of FIP-snooped FLOGO frames received on the interface. Number of ENode Keep Alives Number of FIP-snooped ENode keep-alive frames received on the interface. Number of VN Port Keep Alives Number of FIP-snooped VN port keep-alive frames received on the interface.
FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 38. Configuration Example: FIP Snooping on a Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
DellEMC(conf-if-te-1/1/1)# protocol lldp DellEMC(conf-if-te-1/1/1-lldp)# dcbx port-role auto-downstream NOTE: A port is enabled by default for bridge-ENode links.
15 Flex Hash and Optimized Boot-Up This chapter describes the Flex Hash and fast-boot enhancements. Topics: • • • • • • • Flex Hash Capability Overview Configuring the Flex Hash Mechanism Configuring Fast Boot and LACP Fast Switchover Optimizing the Boot Time Interoperation of Applications with Fast Boot and System States RDMA Over Converged Ethernet (RoCE) Overview Preserving 802.
To delete the configured flex hash setting, use the no version of the command. Configuring Fast Boot and LACP Fast Switchover Configure the optimized booting time functionality by performing the following steps. 1. Enable the system to restart with optimized booting-time functionality enabled. CONFIGURATION mode DellEMC(conf)#reload-type fastboot 2. Configure fast boot on a port-channel on both the nodes that are members of a port-channel in order to enable the physical ports to be aggregated faster.
3. Before performing the planned reload, we recommend that the IPv6 Neighbor Discovery (ND) reachable timer is increased to a value of 300 seconds or longer on the adjacent devices to prevent the ND cache entries from becoming stale and being removed while the ToR goes through a CPU reset. This timer can be restored to its prior value after the ToR has completed its planned reload. 4.
• The system saves all the dynamic ND cache entries to a database on the flash card.
Changes to BGP Multipath When the system becomes active after a fast-boot restart, a change has been made to the BGP multipath and ECMP behavior. The system delays the computation and installation of additional paths to a destination into the BGP routing information base (RIB) and forwarding table for a certain period of time.
To provide lossless service for RRoCE, the QoS service policy must be configured in the ingress and egress directions on lite sub interfaces. Preserving 802.1Q VLAN Tag Value for Lite Subinterfaces This functionality is supported on the platform. All the frames in a Layer 2 VLAN are identified using a tag defined in the IEEE 802.1Q standard to determine the VLAN to which the frames or traffic are relevant or associated. Such frames are encapsulated with the 802.1Q tags.
16 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) and may require 4 to 5 seconds to reconverge.
Ring Status The ring failure notification and the ring status checks provide two ways to ensure the ring remains up and active in the event of a switch or port failure. Ring Checking At specified intervals, the Master node sends a ring health frame (RHF) through the ring. If the ring is complete, the frame is received on its secondary port and the Master node resets its fail-period timer and continues normal operation.
Figure 39. Example of Multiple Rings Connected by Single Switch Important FRRP Points FRRP provides a convergence time that can generally range between 150ms and 1500ms for Layer 2 networks. The Master node originates a high-speed frame that circulates around the ring. This frame, appropriately, sets up or breaks down the ring. • • • • • • • • • • The Master node transmits ring status check frames at specified intervals. You can run multiple physical rings on the same switch.
Important FRRP Concepts The following table lists some important FRRP concepts. Concept Explanation Ring ID Each ring has a unique 8-bit ring ID through which the ring is identified (for example, FRRP 101 and FRRP 202, as shown in the illustration in Member VLAN Spanning Two Rings Connected by One Switch. Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose.
• Each ring has only one Master node; all others are transit nodes. FRRP Configuration These are the tasks to configure FRRP.
CONFIG-FRRP mode. interface primary interface secondary interface control-vlan vlan id Interface: • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. 4. Configure the Master node. CONFIG-FRRP mode. mode master 5. Identify the Member VLANs for this FRRP group. CONFIG-FRRP mode.
VLAN-ID, Range: VLAN IDs for the ring’s Member VLANs. 6. Enable this FRRP group on this switch. CONFIG-FRRP mode. no disable Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode. timer {hello-interval|dead-interval} milliseconds • • Hello-Interval: the range is from 50 to 2000, in increments of 50 (default is 500).
Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • • • • • Each Control Ring must use a unique VLAN ID. Only two interfaces on a switch can be Members of the same control VLAN. There can be only one Master node for any FRRP group. You can configure FRRP on Layer 2 interfaces only. Spanning Tree (if you enable it globally) must be disabled on both Primary and Secondary interfaces when you enable FRRP.
interface Vlan 201 no ip address tagged TenGigabitEthernet 1/14/1,11/1 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 1/14/1 secondary TenGigabitEthernet 1/11/1 controlvlan 101 member-vlan 201 mode transit no disable Example of R3 TRANSIT interface TenGigabitEthernet 1/14/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 1/21/1 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 1/14/1,21/1 no shutdown ! interface Vlan 2
Figure 40. FRRP Ring Connecting VLT Devices You can also configure an FRRP ring where both the VLT peers are connected to the FRRP ring and the VLTi acts as the primary interface for the FRRP Master and transit nodes. This active-active FRRP configuration blocks the FRRP ring on a per VLAN or VLAN group basis enabling the configuration to spawn across different set of VLANs.
multiple member VLANS are configured (for example, M1 to M10) that carry the data traffic across the FRRP rings. The secondary port P2 is tagged to the control VLAN (V1). VLTi is implicitly tagged to the member VLANs when these VLANs are configured in the VLT peer. As a result of the VLT Node2 configuration on R2, the secondary interface P2 is blocked for the member VLANs (M11 to Mn). Following figure illustrated the FRRP Ring R1 topology: Figure 41.
17 GARP VLAN Registration Protocol (GVRP) The generic attribute registration protocol (GARP) VLAN registration protocol (GVRP), defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and deregister attribute values, such as VLAN IDs, with each other.
Figure 42. Global GVRP Configuration Example Basic GVRP configuration is a two-step process: 1. Enabling GVRP Globally 2. Enabling GVRP on a Layer 2 Interface Related Configuration Tasks • • Configure GVRP Registration Configure a GARP Timer Enabling GVRP Globally To configure GVRP globally, use the following command. • Enable GVRP for the entire switch.
To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command. • Enable GVRP on a Layer 2 interface.
• • Leave — When a GARP device expects to de-register a piece of attribute information, it sends out a Leave message and starts this timer. If a Join message does not arrive before the timer expires, the information is de-registered. The Leave timer must be greater than or equal to 3x the Join timer. The Dell EMC Networking OS default is 600ms. LeaveAll — After startup, a GARP device globally starts a LeaveAll timer.
18 Internet Group Management Protocol (IGMP) Internet group management protocol (IGMP) is a Layer 3 multicast protocol that hosts use to join or leave a multicast group. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. Multicast routing protocols (such as protocol-independent multicast [PIM]) use the information in IGMP messages to discover which groups are active and to populate the multicast routing table.
Figure 43. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group. 1. One router on a subnet is elected as the querier. The querier periodically multicasts (to all-multicast-systems address 224.0.0.1) a general query to all hosts on the subnet. 2.
• • To enable filtering, routers must keep track of more state information, that is, the list of sources that must be filtered. An additional query type, the Group-and-Source-Specific Query, keeps track of state changes, while the Group-Specific and General queries still refresh the existing state.
3. The host’s third message indicates that it is only interested in traffic from sources 10.11.1.1 and 10.11.1.2. Because this request again prevents all other sources from reaching the subnet, the router sends another group-and-source query so that it can satisfy all other hosts. There are no other interested hosts so the request is recorded. Figure 46.
Figure 47. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
• View IGMP-enabled IPv4 interfaces. • EXEC Privilege mode show ip igmp interface View IGMP-enabled IPv6 interfaces. EXEC Privilege mode show ipv6 mld interface DellEMC#show ip igmp interface TenGigabitEthernet 1/10/1 Inbound IGMP access group is not set Internet address is 165.87.34.
Viewing IGMP Groups To view both learned and statically configured IGMP groups, use the following command. • View both learned and statically configured IGMP groups. EXEC Privilege mode show ip igmp groups show ipv6 mld groups DellEMC#show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface 225.1.1.1 TenGigabitEthernet 1/1/1 225.1.2.
• Interface mode ipv6 mld query-max-response-time Adjust the last member query interval. • INTERFACE mode ip igmp last-member-query-interval Adjust the amount of time the querier waits, for the initial query response, before sending the next IPv6 query. Interface mode ipv6 mld last-member-query-interval Enabling IGMP Immediate-Leave If the querier does not receive a response to a group-specific or group-and-source query, it sends another (querier robustness value).
• CONFIGURATION mode show running-config Disable snooping on a VLAN.
show ip igmp snooping mrouter Configuring the Switch as Querier To configure the switch as a querier, use the following command. Hosts that do not support unsolicited reporting wait for a general query before sending a membership report. When the multicast source and receivers are in the same VLAN, multicast traffic is not routed and so there is no querier. Configure the switch to be the querier for a VLAN so that hosts send membership reports and the switch can generate a forwarding table by snooping.
Traffic (switch initiated management traffic or responses to switch-destined traffic with management port IP address as the source IP address) for user-specified management protocols must exit out of the management port. In this chapter, all the references to traffic indicate switch-initiated traffic and responses to switch-destined traffic with management port IP address as the source IP address.
Enabling and Disabling Management Egress Interface Selection You can enable or disable egress-interface-selection using the management egress-interface-selection command. NOTE: Egress Interface Selection (EIS) works only with IPv4 routing. When the feature is enabled using the management egress-interface-selection command, the following events are performed: • • • • • • • • • • • • • The CLI prompt changes to the EIS mode.
• • • • • • • • • • • • TCP/UDP port number is extracted from the sockaddr structure in the in_selectsrc call which is called as part of the connect system call or in the ip_output function. If the destination TCP/UDP port number belongs to a configured management application, then sin_port of destination sockaddr structure is set to Management EIS ID 2 so that route lookup can be done in the management EIS routing table.
Handling of Transit Traffic (Traffic Separation) This is forwarded traffic where destination IP is not an IP address configured in the switch. • • • Packets received on the management port with destination on the front-end port is dropped. Packets received on the front-end port with destination on the management port is dropped. A separate drop counter is incremented for this case. This counter is viewed using the netstat command, like all other IP layer counters.
2. Non-Management Applications (Applications that are not configured as management applications as defined by this feature): Non-management application traffic exits out of either front-end data port or management port based on routing table. If there is a default route on both the management and front-end data port, the default for the data port is preferred route.
EIS behavior for ICMP: ICMP packets do not have TCP/UDP ports. In this case, to perform an EIS route lookup for ICMP-based applications (ping and traceroute), you must configure ICMP as a management application. If the management port is down or the route lookup fails, packets are dropped. If source IP address does not match the management port IP address route lookup is done in the default routing table.
19 Interfaces This chapter describes interface types, both physical and logical, and how to configure them with Dell EMC Networking Operating System (OS). The system supports 10 Gigabit Ethernet and 40 Gigabit Ethernet interfaces. NOTE: Only Dell-qualified optics are supported on these interfaces. Non-Dell 40G optics are set to error-disabled state.
• • • • • • • • • • • • • • • • Monitoring and Maintaining Interfaces Non Dell-Qualified Transceivers Splitting 40G Ports without Reload Splitting QSFP Ports to SFP+ Ports Converting a QSFP or QSFP+ Port to an SFP or SFP+ Port Link Dampening Link Bundle Monitoring Using Ethernet Pause Frames for Flow Control Configure the MTU Size on an Interface Port-Pipes Auto-Negotiation on Ethernet Interfaces View Advanced Interface Information Configuring the Traffic Sampling Size Globally Dynamic Counters Compressing
Pluggable media present, QSFP type is 40GBASE-CR4-1M Interface index is 2111492 Internet address is not set Mode of IPv4 Address Assignment : NONE DHCP Client-ID :ecf4bbfc007e MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 10000 Mbit Flowcontrol rx off tx off ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 23:55:12 Queueing strategy: fifo Input Statistics: 0 packets, 0 bytes 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 o
Resetting an Interface to its Factory Default State You can reset the configurations applied on an interface to its factory default state. To reset the configuration, perform the following steps: 1. View the configurations applied on an interface. INTERFACE mode show config DellEMC(conf-if-te-1/5/1)#show config ! interface TenGigabitEthernet 1/5/1 no ip address portmode hybrid switchport rate-interval 8 mac learning-limit 10 no-station-move no shutdown 2. Reset an interface to its factory default state.
For more information about VLANs, refer to Bulk Configuration. For more information on port channels, refer to Port Channel Interfaces. Dell EMC Networking OS Behavior: The system uses a single MAC address for all physical interfaces. Configuration Task List for Physical Interfaces By default, all interfaces are operationally disabled and traffic does not pass through them.
Table 41. Layer Modes Type of Interface Possible Modes Requires Creation Default State 10 Gigabit Ethernet and 40 Gigabit Ethernet Layer 2 No Shutdown (disabled) Management N/A No Shutdown (disabled) Loopback Layer 3 Yes No shutdown (enabled) Null interface N/A No Enabled Port Channel Layer 2 Yes Shutdown (disabled) Yes, except for the default VLAN.
• INTERFACE mode ip address ip-address Enable the interface. INTERFACE mode no shutdown If an interface is in the incorrect layer mode for a given command, an error message is displayed (shown in bold). In the following example, the ip address command triggered an error message because the interface is in Layer 2 mode and the ip address command is a Layer 3 command only. DellEMC(conf-if)#show config ! interface TenGigabitEthernet 1/2/1 no ip address switchport no shutdown DellEMC(conf-if)#ip address 10.
• • • • BPDU Guard FEFD MAC learning limit ARP inspection Based on the automatic recovery configuration, when the interface is changed to Err-disabled state, the Dell EMC Networking OS invokes a timer for the configured time-out interval. Upon expiration of the timer, the interface is moved to operationally up state if the encountered error is fixed. If not, the interface is again moved to Err-disabled state again.
Egress Interface Selection (EIS) EIS allows you to isolate the management and front-end port domains by preventing switch-initiated traffic routing between the two domains. This feature provides additional security by preventing flooding attacks on front-end ports. The following protocols support EIS: DNS, FTP, NTP, RADIUS, sFlow, SNMP, SSH, Syslog, TACACS, Telnet, and TFTP. This feature does not support sFlow on stacked units.
ip address ip-address mask • ip-address mask: enter an address in dotted-decimal format (A.B.C.D). The mask must be in /prefix format (/x). You can configure two global IPv6 addresses on the system in EXEC Privilege mode. To view the addresses, use the show interface managementethernet command, as shown in the following example. If you try to configure a third IPv6 address, an error message displays. If you enable auto-configuration, all IPv6 addresses on that management interface are auto-configured.
• • After the virtual IP address is removed, the system is accessible through the native IP address of the primary RPM’s management interface. Primary and secondary management interface IP and virtual IP must be in the same subnet. To view the Primary RPM Management port, use the show interface Managementethernet command in EXEC Privilege mode. If there are two RPMs, you cannot view information on that interface.
Dell EMC Networking OS supports Inter-VLAN routing (Layer 3 routing in VLANs). You can add IP addresses to VLANs and use them in routing protocols in the same manner that physical interfaces are used. For more information about configuring different routing protocols, refer to the chapters on the specific protocol. A consideration for including VLANs in routing protocols is that you must configure the no shutdown command. (For routing traffic to flow, you must enable the VLAN.
Configuring Port Delay To configure a delayed bring up of all interfaces during switch boot up, use the following command: • Enter the CONFIGURATION mode. CONFIGURATION mode Use the port-delay-restore command and ensure to specify a value between 1 second and 300 seconds. DellEMC(conf)#port-delay-restore 300 Use the no port-delay-restore command to disable the feature.
• Dynamic — Port channels that are dynamically configured using the link aggregation control protocol (LACP). For details, see Link Aggregation Control Protocol (LACP). The port channel ID ranges from 1 to 4096. Although the system allows you to assign more number of ports in a port channel, Dell EMC Networking recommends having a maximum of 16 interfaces per port channel. As soon as you configure a port channel, Dell EMC Networking OS treats it like a physical interface. For example, IEEE 802.
CONFIGURATION mode interface port-channel id-number 2. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown After you enable the port channel, you can place it in Layer 2 or Layer 3 mode. To place the port channel in Layer 2 mode or configure an IP address to place the port channel in Layer 3 mode, use the switchport command. You can configure a port channel as you would a physical interface by enabling or configuring protocols or assigning access control lists.
Internet address is 1.1.120.
The following example shows moving an interface from port channel 4 to port channel 3.
Configuring VLAN Tags for Member Interfaces To configure and verify VLAN tags for individual members of a port channel, perform the following: 1. Configure VLAN membership on individual ports INTERFACE mode DellEMC(conf-if)#vlan tagged 2,3-4 2. Use the switchport command in INTERFACE mode to enable Layer 2 data transmissions through an individual interface INTERFACE mode DellEMC(conf-if)#switchport 3. Verify the manually configured VLAN membership (show interfaces switchport interface command).
Load Balancing Through Port Channels Dell EMC Networking OS uses hash algorithms for distributing traffic evenly over channel members in a port channel (LAG). The hash algorithm distributes traffic among Equal Cost Multi-path (ECMP) paths and LAG members. The distribution is based on a flow, except for packet-based hashing. A flow is identified by the hash and is assigned to one link. In packet-based hashing, a single flow can be distributed on the LAG and uses one link.
• • xor8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8 xor16 — uses 16 bit XOR. Bulk Configuration Bulk configuration allows you to determine if interfaces are present for physical interfaces or configured for logical interfaces. Interface Range An interface range is a set of interfaces to which other commands may be applied and may be created if there is at least one valid interface within the range.
Create a Multiple-Range The following is an example of multiple range. Example of the interface range Command (Multiple Ranges) DellEMC(conf)#interface range tengigabitethernet 1/5/1 - 1/10/1 , tengigabitethernet 1/1/1 , vlan 1 DellEMC(conf-if-range-te-1/5/1-1/10/1,te-1/1/1,vl-1)# Exclude Duplicate Entries The following is an example showing how duplicate entries are omitted from the interface-range prompt.
Defining Interface Range Macros You can define an interface-range macro to automatically select a range of interfaces for configuration. Before you can use the macro keyword in the interface-range macro command string, define the macro. To define an interface-range macro, use the following command. • Defines the interface-range macro and saves it in the running configuration file.
• q — Quit DellEMC#monitor interface Te 1/1/1 Dell uptime is 1 day(s), 4 hour(s), 31 minute(s) Monitor time: 00:00:00 Refresh Intvl.
Non Dell-Qualified Transceivers The system supports Dell-qualified transceivers and only some of the non Dell-qualified transceivers. If the system displays an error message similar to the following, the transceiver is not Dell-qualified. The Dell EMC Networking OS places the interface in error-disabled (operationally down) state.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 28 30 32 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 28 30 32 You can only split the 40G ports in the top row (odd numbered ports) on a 16X40G module. If you configure 4X10G on a 40G interface, the subsequent even numbered interface is removed and unavailable for use.
reload of the system occurs, the 40G interface configuration is not applicable because the 40G ports are split into four 10G ports after the reload operation. While the reload is in progress, you might see error messages when the configuration file is being loaded. You can ignore these error messages. Similarly, such error messages are displayed during a reload after you configure the four individual 10G ports to be stacked as a single 40G port.
Important Points to Remember • • • • • • Starting from Dell OS 9.7(0.0), as part of dynamic fan-out support, only 96 ports can be split into 10G mode. Remaining eight ports stay in 40G. For more information, see Splitting 40G Ports without Reload. Before using the QSA to convert a 40 Gigabit Ethernet port to a 10 Gigabit SFP or SFP+ port, enable 40 G to 4*10 fan-out mode on the device.
SFP+ 3/1 Ext Id SFP+ 3/1 Connector ………………………. = 0x00 = 0x23 Dell#show interfaces tengigabitethernet 1/4/1 transceiver SFP 4/1 Serial ID Base Fields SFP 4/1 Id = 0x0d SFP 4/1 Ext Id = 0x00 SFP 4/1 Connector = 0x23 SFP 4/1 Transceiver Code = 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 SFP 4/1 Encoding = 0x00 ……………… ……………… SFP 4/1 Diagnostic Information =================================== SFP 4/1 Rx Power measurement type = OMA =================================== SFP 4/1 Temp High Alarm threshold = 0.
Configuration Example of Link Dampening The figure shows a how link dampening works in a sample scenario when an interface is configured with dampening. The following figure shows the interface state change, accumulation and decay of penalty, and the interface advertised state based on the set dampening parameters.
Figure 48. Interface State Change Consider an interface periodically flaps as shown above. Every time the interface goes down, a penalty (1024) is added. In the above example, during the first interface flap (flap 1), the penalty is added to 1024. And, the accumulated penalty will exponentially decay based on the set half-life, which is set as 10 seconds in the above example. During the second interface flap (flap 2), again the penalty (1024) is accumulated.
Enabling Link Dampening To enable link dampening, use the following command. • Enable link dampening. INTERFACE mode dampening To view the link dampening configuration on an interface, use the show config command. R1(conf-if-te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 ip address 10.10.19.1/24 dampening 1 2 3 4 no shutdown To view dampening information on all or specific dampened interfaces, use the show interfaces dampening command from EXEC Privilege mode.
Configure MTU Size on an Interface In Dell EMC Networking OS, Maximum Transmission Unit (MTU) is defined as the entire Ethernet packet (Ethernet header + FCS + payload). The following table lists the range for each transmission media. Transmission Media MTU Range (in bytes) Ethernet 592-9216 = link MTU 576-9398 = IP MTU The IP MTU automatically configures.
Control how the system responds to and generates 802.3x pause frames on Ethernet interfaces. The default is rx off tx off. INTERFACE mode. flowcontrol rx [off | on] tx [off | on]| [monitor session-ID] Where: rx on: Processes the received flow control frames on this port. rx off: Ignores the received flow control frames on this port. tx on: Sends control frames from this port to the connected device when a higher rate of traffic is received.
Layer 2 Overhead Difference Between Link MTU and IP MTU Tagged Packet with VLAN-Stack Header 26 bytes Link MTU and IP MTU considerations for port channels and VLANs are as follows. Port Channels: • • All members must have the same link MTU value and the same IP MTU value. The port channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the channel members.
CONFIGURATION mode interface interface-type 5. Set the local port speed. INTERFACE mode speed {10 | 100 | 1000 | 10000 | auto} NOTE: If you use an active optical cable (AOC), you can convert the QSFP+ port to a 10 Gigabit SFP+ port or 1 Gigabit SFP port. You can use the speed command to enable the required speed. 6. Optionally, set full- or half-duplex. INTERFACE mode duplex {half | full} 7. Disable auto-negotiation on the port.
Example of the negotiation auto Command DellEMC(conf)# int tengigabitethernet 1/1/1 DellEMC(conf-if-te-1/1/1)#neg auto DellEMC(conf-if-te-1/1/1-autoneg)# ? end Exit from configuration mode exit Exit from autoneg configuration mode mode Specify autoneg mode no Negate a command or set its defaults show Show autoneg configuration information DellEMC(conf-if-te-1/1/1-autoneg)#mode ? forced-master Force port to master mode forced-slave Force port to slave mode DellEMC(conf-if-te-1/1/1-autoneg)# For details about
Name: TenGigabitEthernet 1/1/2 802.1QTagged: True Vlan membership: Vlan 2 Name: TenGigabitEthernet 1/1/3 802.1QTagged: True Vlan membership: Vlan 2 Name: TenGigabitEthernet 1/1/4 802.1QTagged: True Vlan membership: Vlan 2 --More-- Configuring the Interface Sampling Size Although you can enter any value between 30 and 299 seconds (the default), software polling is done once every 15 seconds. So, for example, if you enter “19”, you actually get a sample of the past 15 seconds.
0 packets input, 0 bytes Input 0 IP Packets, 0 Vlans 0 MPLS 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts Received 0 input symbol errors, 0 runts, 0 giants, 0 throttles 0 CRC, 0 IP Checksum, 0 overrun, 0 discarded 0 packets output, 0 bytes, 0 underruns Output 0 Multicasts, 0 Broadcasts, 0 Unicasts 0 IP Packets, 0 Vlans, 0 MPLS 0 throttles, 0 discarded Rate info (interval 100 seconds): Input 00.00 Mbits/sec, 0 packets/sec, 0.
Time since last interface status change: 01:07:44 DellEMC#show int po 20 Port-channel 20 is up, line protocol is up Hardware address is 4c:76:25:f4:ab:02, Current address is 4c:76:25:f4:ab:02 Interface index is 1258301440 Minimum number of links to bring Port-channel up is 1 Internet address is not set Mode of IPv4 Address Assignment : NONE DHCP Client-ID :4c7625f4ab02 MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 80000 Mbit Members in this channel: Fo 1/1/7/1(U) Fo 1/1/8/1(U) ARP type: ARPA, ARP Timeout 04:
• Clear the counters used in the show interface commands for all VRRP groups, VLANs, and physical interfaces or selected ones. Without an interface specified, the command clears all interface counters. EXEC Privilege mode clear counters [interface] [vrrp [vrid] | learning-limit] (OPTIONAL) Enter the following interface keywords and slot/port or number information: • • • • • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information.
Uncompressed Compressed ! ! interface TenGigabitEthernet 1/3/1 interface TenGigabitEthernet 1/34/1 no ip address ip address 2.1.1.1/16 shutdown shutdown ! ! interface TenGigabitEthernet 1/4/1 interface group Vlan 2 , Vlan 100 no ip address no ip address shutdown no shutdown ! ! interface TenGigabitEthernet 1/10/1 interface group Vlan 3 – 5 no ip address tagged te 1/1/1 shutdown no ip address ! shutdown interface TenGigabitEthernet 1/34/1 ! ip address 2.1.1.
Uncompressed Compressed no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
0 Multicasts, 0 Broadcasts, 0 Unicasts 0 Vlans, 0 throttles, 0 discarded, 0 collisions, 0 wreddrops Rate info (interval 299 seconds): Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Output 00.00 Mbits/sec, 0 packets/sec,0.
2. 3. 4. 5. Packets are dropped due to user defined ACLs. Multicast traffic with the TTL value 1. Multicast traffic is not part of any group or special group that has to be processed by the CPU. In addition to the above protocols, the filter processor rule also drops Yellow and Red packets if QoS is configured on the system.
20 IPv4 Routing The Dell EMC Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell EMC Networking OS.
IP Addresses Dell EMC Networking OS supports IP version 4 (as described in RFC 791), classful routing, and variable length subnet masks (VLSM). With VLSM, you can configure one network with different masks. Supernetting, which increases the number of subnets, is also supported. To subnet, you add a mask to the IP address to separate the network and host portions of the IP address.
• secondary: add the keyword secondary if the IP address is the interface’s backup IP address. You can configure up to eight secondary IP addresses. To view the configuration, use the show config command in INTERFACE mode or use the show ip interface command in EXEC privilege mode, as shown in the second example. DellEMC(conf-if)#show conf ! interface TenGigabitEthernet 1/1/1 ip address 10.11.1.
Direct, Lo 0 --More-Dell EMC Networking OS installs a next hop that is on the directly connected subnet of current IP address on the interface. Dell EMC Networking OS also installs a next hop that is not on the directly connected subnet but which recursively resolves to a next hop on the interface's configured subnet. • • • • When the interface goes down, Dell EMC Networking OS withdraws the route. When the interface comes up, Dell EMC Networking OS re-installs the route.
To view the configured static routes for the management port, use the show ip management-route command in EXEC privilege mode. DellEMC#show ip management-route Destination ----------10.16.0.0/16 172.16.1.0/24 Gateway ------ManagementEthernet 1/1 10.16.151.
Configure the source to send the configured source interface IP address instead of using its front-end IP address in the ICMP unreachable messages and in the traceroute command output. Use the ip icmp source-interface interface or the ipv6 icmp source-interface interface commands in Configuration mode to enable the ICMP error messages to be sent with the source interface IP address. This functionality is supported on loopback, VLAN, port channel, and physical interfaces for IPv4 and IPv6 messages.
Name server, Domain name, and Domain list are VRF specific. The maximum number of Name servers and Domain lists per VRF is six. Enabling Dynamic Resolution of Host Names By default, dynamic resolution of host names (DNS) is disabled. To enable DNS, use the following commands. • Enable dynamic resolution of host names. • CONFIGURATION mode ip domain-lookup Specify up to six name servers. CONFIGURATION mode ip name-server ip-address [ip-address2 ...
• Specify up to six name servers. CONFIGURATION mode ip name-server ip-address [ip-address2 ... ip-address6] • The order you entered the servers determines the order of their use. When you enter the traceroute command without specifying an IP address (Extended Traceroute), you are prompted for a target and source IP address, timeout in seconds (default is 5), a probe count (default is 3), minimum TTL (default is 1), maximum TTL (default is 30), and port number (default is 33434).
• Configure an IP address and MAC address mapping for an interface. CONFIGURATION mode arp vrf vrf-name ip-address mac-address interface • • • • vrf vrf-name: use the VRF option to configure a static ARP on that particular VRF. ip-address: IP address in dotted decimal format (A.B.C.D). mac-address: MAC address in nnnn.nnnn.nnnn format. interface: enter the interface type slot/port information. For 10G interfaces, enter the slot/port[/subport] information.
In the request, the host uses its own IP address in the Sender Protocol Address and Target Protocol Address fields. Enabling ARP Learning via Gratuitous ARP To enable ARP learning via gratuitous ARP, use the following command. • Enable ARP learning via gratuitous ARP. CONFIGURATION mode arp learn-enable ARP Learning via ARP Request In Dell EMC Networking OS versions prior to 8.3.1.
Configuring ARP Retries You can configure the number of ARP retries. The default backoff interval remains at 20 seconds. To set and display ARP retries, use the following commands. • Set the number of ARP retries. CONFIGURATION mode arp retries number The default is 5. • The range is from 1 to 20. Set the exponential timer for resending unresolved ARPs. CONFIGURATION mode arp backoff-time The default is 30. • The range is from 1 to 3600. Display all ARP entries learned via gratuitous ARP.
host an ICMP redirect message with the better route. The gateway router routes the packet to its destination and the host sends subsequent packets to that particular destination through the correct router. Dell EMC Networking OS supports both ICMP and ICMP6 redirect messages. The following diagram depicts a topology in which ICMP redirect messages are useful. Figure 51. ICMP Redirect Host H is connected to the same Ethernet segment as SW1 and SW2.
• • You may specify a maximum of 16 UDP ports. UDP helper is compatible with IP helper (ip helper-address): • • UDP broadcast traffic with port number 67 or 68 are unicast to the dynamic host configuration protocol (DHCP) server per the ip helper-address configuration whether or not the UDP port list contains those ports. If the UDP port list contains ports 67 or 68, UDP broadcast traffic is forwarded on those ports. Enabling UDP Helper To enable UDP helper, use the following command.
Figure 52. UDP Helper with Broadcast-All Addresses UDP Helper with Subnet Broadcast Addresses When the destination IP address of an incoming packet matches the subnet broadcast address of any interface, the system changes the address to the configured broadcast address and sends it to matching interface. In the following illustration, Packet 1 has the destination IP address 1.1.1.255, which matches the subnet broadcast address of VLAN 101.
Figure 54. UDP Helper with Configured Broadcast Addresses UDP Helper with No Configured Broadcast Addresses The following describes UDP helper with no broadcast addresses configured. • • If the incoming packet has a broadcast destination IP address, the unaltered packet is routed to all Layer 3 interfaces. If the Incoming packet has a destination IP address that matches the subnet broadcast address of any interface, the unaltered packet is routed to the matching interfaces.
21 IPv6 Routing Internet protocol version 6 (IPv6) routing is the successor to IPv4. Due to the rapid growth in internet users and IP addresses, IPv4 is reaching its maximum usage. IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell EMC Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
• Prefix Renumbering — Useful in transparent renumbering of hosts in the network when an organization changes its service provider. NOTE: As an alternative to stateless autoconfiguration, network hosts can obtain their IPv6 addresses using the dynamic host control protocol (DHCP) servers via stateful auto-configuration. NOTE: Dell EMC Networking OS provides the flexibility to add prefixes on Router Advertisements (RA) to advertise responses to Router Solicitations (RS).
To support /65 – /128 IPv6 route prefix entries, Dell EMC Networking OS needs to be programmed with /65 - /128 bit IPv6 support. The number of entries as well needs to be explicitly programmed. This number can be1K, 2K, or 3K granularity. On the system, for IPv6 /65 to /128 will consume the same storage banks which is used by the L3_DEFIP table. Once the IPv6 128 bit is enabled, number of entries in L3_DEFIP will be reduced. LPM partitioning will take effect after reboot of the box.
Payload Length (16 bits) The Payload Length field specifies the packet payload. This is the length of the data following the IPv6 header. IPv6 Payload Length only includes the data following the header, not the header itself. The Payload Length limit of 2 bytes requires that the maximum packet payload be 64 KB. However, the Jumbogram option type Extension header supports larger packet sizes when required. Next Header (8 bits) The Next Header field identifies the next header’s type.
However, if the Destination Address is a Hop-by-Hop options header, the Extension header is examined by every forwarding router along the packet’s route. The Hop-by-Hop options header must immediately follow the IPv6 header, and is noted by the value 0 (zero) in the Next Header field. Extension headers are processed in the order in which they appear in the packet header. Hop-by-Hop Options Header The Hop-by-Hop options header contains information that is examined by every router along the packet’s path.
For example, 2001:0db8:1234::/48 stands for the network with addresses 2001:0db8:1234:0000:0000:0000:0000:0000 through 2001:0db8:1234:ffff:ffff:ffff:ffff:ffff. Link-local Addresses Link-local addresses, starting with fe80:, are assigned only in the local link area. The addresses are generated usually automatically by the operating system's IP layer for each network interface.
Feature and Functionality Documentation and Chapter Location IPv6 BGP MD5 Authentication IPv6 BGP in the Dell EMC Networking OS Command Line Reference Guide. IS-IS for IPv6 Intermediate System to Intermediate System IPv6 IS-IS in the Dell EMC Networking OS Command Line Reference Guide. IS-IS for IPv6 support for redistribution Intermediate System to Intermediate System IPv6 IS-IS in the Dell EMC Networking OS Command Line Reference Guide.
ICMPv6 ICMP for IPv6 combines the roles of ICMP, IGMP and ARP in IPv4. Like IPv4, it provides functions for reporting delivery and forwarding errors, and provides a simple echo service for troubleshooting. The Dell EMC Networking OS implementation of ICMPv6 is based on RFC 4443. Generally, ICMPv6 uses two message types: • • Error reporting messages indicate when the forwarding or delivery of the packet failed at the destination or intermediate node.
NOTE: To avoid problems with network discovery, Dell EMC Networking recommends configuring the static route last or assigning an IPv6 address to the interface and assigning an address to the peer (the forwarding router’s address) less than 10 seconds apart. With ARP, each node broadcasts ARP requests on the entire link. This approach causes unnecessary processing by uninterested nodes.
DellEMC(conf-if-te-1/1/1)#ipv6 nd dns-server 1000::1 ? <0-4294967295> Max lifetime (sec) which RDNSS address may be used for name resolution infinite Infinite lifetime (sec) which RDNSS address may be used for name resolution DellEMC(conf-if-te-1/1/1)#ipv6 nd dns-server 1000::1 1 Debugging IPv6 RDNSS Information Sent to the Host To verify that the IPv6 RDNSS information sent to the host is configured correctly, use the debug ipv6 nd command in EXEC Privilege mode.
ND router advertisements live for 1800 seconds ND advertised hop limit is 64 IPv6 hop limit for originated packets is 64 ND dns-server address is 1000::1 with lifetime of 1 seconds ND dns-server address is 3000::1 with lifetime of 1 seconds ND dns-server address is 2000::1 with lifetime of 0 seconds IP unicast RPF check is not supported To display IPv6 RDNSS information, use the show configuration command in INTERFACE CONFIG mode.
cam-acl { ipv6acl } When not selecting the default option, enter all of the profiles listed and a range for each. The total space allocated must equal 13. • The ipv6acl range must be a factor of 2. Show the current CAM settings. • EXEC mode or EXEC Privilege mode show cam-acl Provides information on FP groups allocated for the egress acl. CONFIGURATION mode show cam-acl-egress Allocate at least one group for L2ACL and IPv4 ACL. The total number of groups is 4.
• • • • For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. For a port channel interface, enter the keywords port-channel then a number. For a Null interface, enter the keyword null then the Null interface number. For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Configuring Telnet with IPv6 The Telnet client and server in Dell EMC Networking OS supports IPv6 connections.
Displaying an IPv6 Interface Information To view the IPv6 configuration for a specific interface, use the following command. • Show the currently running configuration for the specified interface. EXEC mode show ipv6 interface interface {slot/port[/subport]} Enter the keyword interface then the type of interface and slot/port information: • • • • • • • For all brief summary of IPv6 status and configuration, enter the keyword brief. For all IPv6 configured interfaces, enter the keyword configured.
• • • To display information about Routing Information Protocol (RIP), enter rip. To display information about static IPv6 routes, enter static. To display information about an IPv6 Prefix lists, enter list and the prefix-list name. The following example shows the show ipv6 route summary command. DellEMC#show ipv6 route summary Route Source Active Routes Non-active Routes connected 5 0 static 0 0 Total 5 0 The following example shows the show ipv6 route command.
shutdown DellEMC# Clearing IPv6 Routes To clear routes from the IPv6 routing table, use the following command. • Clear (refresh) all or a specific route from the IPv6 routing table. EXEC mode clear ipv6 route {* | ipv6 address prefix-length} • • • *: all routes. ipv6 address: the format is x:x:x:x::x. mask: the prefix length is from 0 to 128. NOTE: IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is separated by a colon (:).
POLICY LIST CONFIGURATION mode hop-limit {maximum | minimum limit} The hop limit range is from 0 to 254. 6. Set the managed address configuration flag. POLICY LIST CONFIGURATION mode managed-config-flag {on | off} 7. Enable verification of the sender IPv6 address in inspected messages from the authorized device source access list. POLICY LIST CONFIGURATION mode match ra{ipv6-access-list name | ipv6-prefix-list name | mac-access-list name} 8.
Configuring IPv6 RA Guard on an Interface To configure the IPv6 Router Advertisement (RA) guard on an interface, perform the following steps: 1. Configure the terminal to enter the Interface mode. CONFIGURATION mode interface interface-type slot/port[/subport] 2. Apply the IPv6 RA guard to a specific interface. INTERFACE mode ipv6 nd ra-guard attach policy policy-name [vlan [vlan 1, vland 2, vlan 3.....]] 3. Display the configurations applied on all the RA guard policies or a specific RA guard policy.
22 iSCSI Optimization This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-of-service (QoS) treatment for iSCSI traffic.
This cannot be inferred as the maximum supported iSCSI sessions are reached. Also, number of iSCSI sessions displayed on the system may show any number equal to or less than the maximum. The following illustration shows iSCSI optimization between servers and a storage array in which a stack of three switches connect installed servers (iSCSI initiators) to a storage array (iSCSI targets) in a SAN network.
You can configure whether the iSCSI optimization feature uses the VLAN priority or IP DSCP mapping to determine the traffic class queue. By default, iSCSI flows are assigned to dot1p priority 4. To map incoming iSCSI traffic on an interface to a dot1p priority-queue other than 4, use the QoS dot1p-priority command (refer to QoS dot1p Traffic Classification and Queue Assignment). Dell EMC Networking recommends setting the CoS dot1p priority-queue to 0 (zero).
The following message displays the first time a Dell EqualLogic array is detected and describes the configuration changes that are automatically performed: %STKUNIT0-M:CP %IFMGR-5-IFM_ISCSI_AUTO_CONFIG: This switch is being configured for optimal conditions to support iSCSI traffic which will cause some automatic configuration to occur including jumbo frames and flow-control on all ports; no storm control and spanning-tree port fast to be enabled on the port of detection.
Enable and Disable iSCSI Optimization The following describes enabling and disabling iSCSI optimizaiton. NOTE: iSCSI monitoring is disabled by default. iSCSI auto-configuration and auto-detection is enabled by default. If you enable iSCSI, flow control is automatically enabled on all interfaces. To disable flow control on all interfaces, use the no flow control rx on tx off command and save the configuration.
Configuring iSCSI Optimization To configure iSCSI optimization, use the following commands. 1. For a non-DCB environment: Enable session monitoring. CONFIGURATION mode cam-acl l2acl 4 ipv4acl 4 ipv6acl 0 ipv4qos 2 l2qos 1 l2pt 0 ipmacacl 0 vman-qos 0 ecfmacl 0 fcoeacl 0 iscsioptacl 2 NOTE: Content addressable memory (CAM) allocation is optional.
• • • • • enable: enables the application of preferential QoS treatment to iSCSI traffic so that iSCSI packets are scheduled in the switch with a dot1p priority 4 regardless of the VLAN priority tag in the packet. The default is: iSCSI packets are handled with dotp1 priority 4 without remark. disable: disables the application of preferential QoS treatment to iSCSI frames.
The following example shows the show iscsi session command. VLT PEER1 DellEMC#show iscsi session Session 0: ----------------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.microsoft:win-x9l8v27yajg ISID: 400001370000 VLT PEER2 Session 0: -----------------------------------------------------------------------------------Target: iqn.2001-05.com.
23 Intermediate System to Intermediate System The intermediate system to intermediate system (IS-IS) protocol that uses a shortest-path-first algorithm. Dell EMC Networking supports both IPv4 and IPv6 versions of IS-IS.
Figure 59. ISO Address Format Multi-Topology IS-IS Multi-topology IS-IS (MT IS-IS) allows you to create multiple IS-IS topologies on a single router with separate databases. Use this feature to place a virtual physical topology into logical routing domains, which can each support different routing and security policies. All routers on a LAN or point-to-point must have at least one common supported topology when operating in Multi-Topology IS-IS mode.
Graceful Restart Graceful restart is a protocol-based mechanism that preserves the forwarding table of the restarting router and its neighbors for a specified period to minimize the loss of packets. A graceful-restart router does not immediately assume that a neighbor is permanently down and so does not trigger a topology change. Normally, when an IS-IS router is restarted, temporary disruption of routing occurs due to events in both the restarting router and the neighbors of the restarting router.
• Accepts external IPv6 information and advertises this information in the PDUs. The following table lists the default IS-IS values. Table 46.
1. Create an IS-IS routing process. CONFIGURATION mode router isis [tag] tag: (optional) identifies the name of the IS-IS process. 2. Configure an IS-IS network entity title (NET) for a routing process. ROUTER ISIS mode net network-entity-title Specify the area address and system ID for an IS-IS routing process. The last byte must be 00. For more information about configuring a NET, refer to IS-IS Addressing. 3. Enter the interface configuration mode.
Redistributing: Distance: 115 Generate narrow metrics: Accept narrow metrics: Generate wide metrics: Accept wide metrics: DellEMC# level-1-2 level-1-2 none none To view IS-IS protocol statistics, use the show isis traffic command in EXEC Privilege mode.
Configuring IS-IS Graceful Restart To enable IS-IS graceful restart globally, use the following commands. Additionally, you can implement optional commands to enable the graceful restart settings. • Enable graceful restart on ISIS processes. • ROUTER-ISIS mode graceful-restart ietf Configure the time during which the graceful restart attempt is prevented. ROUTER-ISIS mode graceful-restart interval minutes The range is from 1 to 120 minutes. • The default is 5 minutes.
T1 Timeout Value Adjacency wait time : 5, retry count: 1 : 30 Operational Timer Value ====================== Current Mode/State : T3 Time left : T2 Time left : Restart ACK rcv count : Restart Req rcv count : Suppress Adj rcv count : Restart CSNP rcv count : Database Sync count : Normal/RUNNING 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 (level-2) (level-2) (level-2) (level-2) (level-2) (level-2) Circuit TenGigabitEthernet 2/10/1: Mode: Normal L1-State:NOR
• • size: the range is from 128 to 9195. The default is 1497. Set the LSP refresh interval. ROUTER ISIS mode lsp-refresh-interval seconds • • seconds: the range is from 1 to 65535. The default is 900 seconds. Set the maximum time LSPs lifetime. ROUTER ISIS mode max-lsp-lifetime seconds • seconds: the range is from 1 to 65535. The default is 1200 seconds. To view the configuration, use the show config command in ROUTER ISIS mode or the show running-config isis command in EXEC Privilege mode.
The default is Level 1 and Level 2 (level-1–2) To view which metric types are generated and received, use the show isis protocol command in EXEC Privilege mode. The IS-IS matrixes settings are in bold. Example of Viewing IS-IS Metric Types DellEMC#show isis protocol IS-IS Router: System Id: EEEE.EEEE.EEEE IS-Type: level-1-2 Manual area address(es): 47.0004.004d.0001 Routing for area address(es): 21.2223.2425.2627.2829.3031.3233 47.0004.004d.
Configuring the Distance of a Route To configure the distance for a route, use the following command. • Configure the distance for a route. ROUTER ISIS mode distance Changing the IS-Type To change the IS-type, use the following commands. You can configure the system to act as a Level 1 router, a Level 1-2 router, or a Level 2 router. To change the IS-type for the router, use the following commands. • Configure IS-IS operating level for a router.
Distribute Routes Another method of controlling routing information is to filter the information through a prefix list. Prefix lists are applied to incoming or outgoing routes and routes must meet the conditions of the prefix lists or Dell EMC Networking OS does not install the route in the routing table. The prefix lists are globally applied on all interfaces running IS-IS. Configure the prefix list in PREFIX LIST mode prior to assigning it to the IS-IS process.
distribute-list prefix-list-name out [bgp as-number | connected | ospf process-id | rip | static] You can configure one of the optional parameters: • • connected: for directly connected routes. • ospf process-id: for OSPF routes only. • rip: for RIP routes only. • static: for user-configured routes. • bgp: for BGP routes only. Deny RTM download for pre-existing redistributed IPv6 routes.
redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: • • level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. • metric-value: the range is from 0 to 16777215. The default is 0. • metric-type: choose either external or internal. The default is internal. • map-name: enter the name of a configured route map.
set-overload-bit • This setting prevents other routers from using it as an intermediate hop in their shortest path first (SPF) calculations. Remove the overload bit. ROUTER ISIS mode no set-overload-bit When the bit is set, a 1 is placed in the OL column in the show isis database command output. The overload bit is set in both the Level-1 and Level-2 database because the IS type for the router is Level-1-2. DellEMC#show isis database IS-IS Level-1 Link State Database LSPID LSP Seq Num LSP Checksum B233.
Dell EMC Networking OS displays debug messages on the console. To view which debugging commands are enabled, use the show debugging command in EXEC Privilege mode. To disable a specific debug command, enter the keyword no then the debug command. For example, to disable debugging of IS-IS updates, use the no debug isis updates-packets command. To disable all IS-IS debugging, use the no debug isis command. To disable all debugging, use the undebug all command.
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value metric value is displayed in the show config and show running-config commands and is used if you change back to transition metric style. NOTE: A truncated value is a value that is higher than 63, but set back to 63 because the higher value is not supported. wide narrow transition default value (10) if the original value is greater than 63. A message is sent to the console.
Beginning Metric Style Next Metric Style Resulting Metric Value Next Metric Style Final Metric Value wide transition truncated value narrow transition default value (10). A message is sent to the logging buffer transition Leaks from One Level to Another In the following scenarios, each IS-IS level is configured with a different metric style. Table 50.
You can configure IPv6 IS-IS routes in one of the following three different methods: • • • Congruent Topology — You must configure both IPv4 and IPv6 addresses on the interface. Enable the ip router isis and ipv6 router isis commands on the interface. Enable the wide-metrics parameter in router isis configuration mode. Multi-topology — You must configure the IPv6 address. Configuring the IPv4 address is optional. You must enable the ipv6 router isis command on the interface.
DellEMC(conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.00 ! address-family ipv6 unicast multi-topology exit-address-family DellEMC(conf-router_isis)# IS-IS Sample Configuration — Multi-topology Transition DellEMC(conf-if-te-3/17/1)#show config ! interface TenGigabitEthernet 3/17/1 ipv6 address 24:3::1/76 ipv6 router isis no shutdown DellEMC(conf-if-te-3/17/1)# DellEMC(conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
24 Link Aggregation Control Protocol (LACP) Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell EMC Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. The benefits and constraints are basically the same, as described in Port Channel Interfaces in the Interfaces chapter.
• Passive — In this state, the interface is not in an active negotiating state, but LACP runs on the link. A port in Passive state also responds to negotiation requests (from ports in Active state). Ports in Passive state respond to LACP packets. Dell EMC Networking OS supports LAGs in the following cases: • • A port in Active state can set up a port channel (LAG) with another port in Active state. A port in Active state can set up a LAG with another port in Passive state.
switchport DellEMC(conf)#interface port-channel 32 DellEMC(conf-if-po-32)#no shutdown DellEMC(conf-if-po-32)#switchport The LAG is in the default VLAN. To place the LAG into a non-default VLAN, use the tagged command on the LAG. DellEMC(conf)#interface vlan 10 DellEMC(conf-if-vl-10)#tagged port-channel 32 Configuring the LAG Interfaces as Dynamic After creating a LAG, configure the dynamic LAG interfaces. To configure the dynamic LAG interfaces, use the following command.
DellEMC# show lacp 32 Port-channel 32 admin up, oper up, mode lacp Actor System ID: Priority 32768, Address 0001.e800.a12b Partner System ID: Priority 32768, Address 0001.e801.
Configuring Shared LAG State Tracking To configure shared LAG state tracking, you configure a failover group. NOTE: If a LAG interface is part of a redundant pair, you cannot use it as a member of a failover group created for shared LAG state tracking. 1. Enter port-channel failover group mode. CONFIGURATION mode port-channel failover-group 2. Create a failover group and specify the two port-channels that will be members of the group.
Members in this channel: Te 1/17/1(U) ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:01:28 Queueing strategy: fifo NOTE: The set of console messages shown above appear only if you configure shared LAG state tracking on that router (you can configure the feature on one or both sides of a link). For example, as previously shown, if you configured shared LAG state tracking on R2 only, no messages appear on R4 regarding the state of LAGs in a failover group.
Example of Viewing a LAG Port Configuration Alpha#sh int TenGigabitEthernet 1/31/1 TenGigabitEthernet 1/31/1 is up, line protocol is up Port is part of Port-channel 10 Hardware is DellEMCEth, address is 00:01:e8:06:95:c0 Current address is 00:01:e8:06:95:c0 Interface Index is 109101113 Port will not be disabled on partial SFM failure Internet address is not set MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 10000 Mbit, Mode full duplex, Slave Flowcontrol rx on tx on ARP type: ARPA, ARP Timeout 04:00:00 Last cl
Figure 65.
Figure 66.
Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int tengig 3/21/1 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-te-3/21/1)#port-channel-protocol lacp Bravo(conf-if-te-3/21/1-lacp)#port-channel 10 mode active Bravo(conf-if-te-3/21/1-lacp)#no shut Bravo(conf-if-te-3/21/1)#end ! interface TenGigabitEthernet 3/21/1 no ip addre
Figure 67.
Figure 68.
Figure 69. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
25 Layer 2 Manage the MAC Address Table You can perform the following management tasks in the MAC address table. • • • • Clearing the MAC Address Table Setting the Aging Time for Dynamic Entries Configuring a Static MAC Address Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command. • Clear a MAC address table of dynamic entries.
Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table. EXEC Privilege mode show mac-address-table [address | aging-time [vlan vlan-id]| count | dynamic | interface | static | vlan] • • • • • • • address: displays the specified entry. aging-time: displays the configured aging-time. count: displays the number of dynamic and static entries for all VLANs, and the total number of entries.
NOTE: An SNMP trap is available for mac learning-limit station-move. No other SNMP traps are available for MAC Learning Limit, including limit violations. mac learning-limit Dynamic The MAC address table is stored on the Layer 2 forwarding information base (FIB) region of the CAM. The Layer 2 FIB region allocates space for static MAC address entries and dynamic MAC address entries. When you enable MAC learning limit, entries created on this port are static by default.
interface TenGigabitEthernet 1/1/1 no ip address switchport mac learning-limit 1 dynamic no-station-move mac learning-limit station-move-violation log no shutdown Learning Limit Violation Actions To configure the system to take an action when the MAC learning limit is reached on an interface and a new address is received using one the following options with the mac learning-limit command, use the following commands. • Generate a system log message when the MAC learning limit is exceeded.
• mac learning-limit reset Reset interfaces in the ERR_Disabled state caused by a learning limit violation. • EXEC Privilege mode mac learning-limit reset learn-limit-violation [interface | all] Reset interfaces in the ERR_Disabled state caused by a station move violation. EXEC Privilege mode mac learning-limit reset station-move-violation [interface | all] Enabling port security You can enable or disable port security feature globally on the Dell EMC Networking OS.
Figure 71. Configuring the mac-address-table station-move refresh-arp Command Configure Redundant Pairs Networks that employ switches that do not support the spanning tree protocol (STP) — for example, networks with digital subscriber line access multiplexers (DSLAM) — cannot have redundant links between switches because they create switching loops (as shown in the following illustration).
Figure 72. Configuring Redundant Layer 2 Pairs without Spanning Tree You configure a redundant pair by assigning a backup interface to a primary interface with the switchport backup interface command. Initially, the primary interface is active and transmits traffic and the backup interface remains down. If the primary fails for any reason, the backup transitions to an active Up state. If the primary interface fails and later comes back up, it remains as the backup interface for the redundant pair.
As shown in the previous illustration, interface 1/11/1 is a backup interface for 1/11/2, and 1/11/2 is in the Down state. If 1/11/1 fails, 1/11/2 transitions to the Up state, which makes the backup link active. A message similar to the following message appears whenever you configure a backup port.
Port-channel 1 Port-channel 2 DellEMC# Active Standby Port-chato mannel 2 Port-channel 1 Standby Active DellEMC(conf-if-po-1)#switchport backup interface tengigabitethernet 1/2/1 Apr 9 00:16:29: %STKUNIT0-M:CP %IFMGR-5-L2BKUP_WARN: Do not run any Layer2 protocols on Po 1 and Te 1/2/1 DellEMC(conf-if-po-1)# Far-End Failure Detection Far-end failure detection (FEFD) is a protocol that senses remote data link errors in a network.
3. When the local interface receives the echoed packet from the remote end, the local interface transitions to the Bi-directional state. 4. If the FEFD enabled system is configured to use FEFD in Normal mode and neighboring echoes are not received after three intervals, (you can set each interval can be set between 3 and 300 seconds) the state changes to unknown. 5.
To display information about the state of each interface, use the show fefd command in EXEC privilege mode. DellEMC#show fefd FEFD is globally 'ON', interval is 3 seconds, mode is 'Normal'.
• Display output whenever events occur that initiate or disrupt an FEFD enabled connection. • EXEC Privilege mode debug fefd events Provide output for each packet transmission over the FEFD enabled connection.
26 Link Layer Discovery Protocol (LLDP) 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices. The collected information is stored in a management information base (MIB) on each device, and is accessible via simple network management protocol (SNMP).
Type TLV Description — Optional Includes sub-types of TLVs that advertise specific configuration information. These sub-types are Management TLVs, IEEE 802.1, IEEE 802.3, and TIA-1057 Organizationally Specific TLVs. Figure 75. LLDPDU Frame Optional TLVs The Dell EMC Networking OS supports these optional TLVs: management TLVs, IEEE 802.1 and 802.3 organizationally specific TLVs, and TIA-1057 organizationally specific TLVs. Management TLVs A management TLV is an optional TLVs sub-type.
Type TLV Description 7 System capabilities Identifies the chassis as one or more of the following: repeater, bridge, WLAN Access Point, Router, Telephone, DOCSIS cable device, end station only, or other. 8 Management address Indicates the network address of the management interface. Dell EMC Networking OS does not currently support this TLV. 127 Port-VLAN ID On Dell EMC Networking systems, indicates the untagged VLAN to which a port belongs.
• • • • manage inventory manage Power over Ethernet (PoE) identify physical location identify network policy LLDP-MED is designed for, but not limited to, VoIP endpoints. TIA Organizationally Specific TLVs The Dell EMC Networking system is an LLDP-MED Network Connectivity Device (Device Type 4).
Type SubType TLV Description 127 10 Inventory — Model Name Indicates the model of the LLDP-MED device. 127 11 Inventory — Asset ID Indicates a user specified device number to manage inventory. 127 12–255 Reserved — LLDP-MED Capabilities TLV The LLDP-MED capabilities TLV communicates the types of TLVs that the endpoint device and the network connectivity device support. LLDP-MED network connectivity devices must transmit the Network Policies TLV.
• • • VLAN tagged or untagged status Layer 2 priority DSCP value An integer represents the application type (the Type integer shown in the following table), which indicates a device function for which a unique network policy is defined. An individual LLDP-MED network policy TLV is generated for each application type that you specify with the Dell EMC Networking OS CLI (Advertising TLVs).
• through the CLI. Dell EMC Networking also honors the power priority value the powered device sends; however, the CLI configuration takes precedence. Power Value — Dell EMC Networking advertises the maximum amount of power that can be supplied on the port. By default the power is 15.4W, which corresponds to a power value of 130, based on the TIA-1057 specification. You can advertise a different power value using the max-milliwatts option with the power inline auto | static command.
Example of the protocol lldp Command (CONFIGURATION Level) R1(conf)#protocol lldp R1(conf-lldp)#? advertise Advertise TLVs disable Disable LLDP protocol globally end Exit from configuration mode exit Exit from LLDP configuration mode hello LLDP hello configuration mode LLDP mode configuration (default = rx and tx) multiplier LLDP multiplier configuration no Negate a command or set its defaults show Show LLDP configuration DellEMC(conf-lldp)#exit DellEMC(conf)#interface tengigabitethernet 1/3/1 DellEMC(conf-
management-interface 3. Enable LLDP. PROTOCOL LLDP mode no disable Disabling and Undoing LLDP on Management Ports To disable or undo LLDP on management ports, use the following command. 1. Enter Protocol LLDP mode. CONFIGURATION mode. protocol lldp 2. Enter LLDP management-interface mode. LLDP-MANAGEMENT-INTERFACE mode. management-interface 3. Enter the disable command. LLDP-MANAGEMENT-INTERFACE mode. To undo an LLDP management port configuration, precede the relevant command with the keyword no.
Figure 80. Configuring LLDP Storing and Viewing Unrecognized LLDP TLVs Dell EMC Networking OS provides support to store unrecognized (reserved and organizational specific) LLDP TLVs. Also, support is extended to retrieve the stored unrecognized TLVs using SNMP. When the incoming TLV from LLDP neighbors is not recognized, the TLV is categorized as unrecognized TLV. The unrecognized TLVs is categorized into two types: 1. Reserved unrecognized LLDP TLV 2.
Viewing Unrecognized LLDP TLVs You can view or retrieve the stored unrecognized (reserved and organizational specific) TLVs using the show lldp neighbor details command. View all the LLDP TLV information including unrecognized TLVs, using the snmpwalk and snmpget commands. Viewing the LLDP Configuration To view the LLDP configuration, use the following command. • Display the LLDP configuration. CONFIGURATION or INTERFACE mode show config The following example shows viewing an LLDP global configuration.
Te 1/1/1 TenGigabitEthernet 1/5 Te 1/2/1 TenGigabitEthernet 1/6 Ma 1/1 swlab2-maa-tor-...TenGigabitEthernet 1/3 00:01:e8:05:40:46 00:01:e8:05:40:46 d8:9e:f3:b2:61:20 The length of the LLDP neighbors (Remote host) name is truncated if it is above 15 characters.
The neighbors are given below: ----------------------------------------------------------------------Remote Chassis ID Subtype: Mac address (4) Remote Chassis ID: 00:00:00:00:00:01 Remote Port Subtype: Interface name (5) Remote Port ID: TenGigabitEthernEt 1/40 Local Port ID: FortyGigE 1/1/1 Locally assigned remote Neighbor Index: 1 Remote TTL: 120 Information valid for next 44 seconds Time since last information change of this neighbor: 00:01:16 UnknownTLVList: ( 9, 4) ( 10, 4) ( 11, 4) ( 12, 4) ( 13, 4) (
OrgUnknownTLVList: ((00-01-66),127, 4) ((00-01-66),126, 4) ((00-01-66),125, 4) ((00-01-66),124, ((00-01-66),122, 4) ((00-01-66),121, 4) ((00-01-66),120, 4) ((00-01-66),119, --------------------------------------------------------------------------Remote Chassis ID Subtype: Mac address (4) Remote Chassis ID: 4c:76:25:f4:ab:03 Remote Port Subtype: Interface name (5) Remote Port ID: fortyGigE 1/2/8/1 Local Port ID: FortyGigE 1/1/2 Locally assigned remote Neighbor Index: 3 Remote TTL: 300 Information valid for
• • Example: snmp-notification-interval [5–3600] SNMP — Through the snmpset command. • • Example: snmpset —c public —v2c 10.16.127.10 LLDP-MIB::lldpNotificationInterval.0 I 20 REST API — Through configuring by REST API method. Configuring LLDP Notification Interval This implementation has been introduced to adhere to the IEEE 802.1AB standard. This implementation allows a user to configure the LLDP notification interval between 5 (default) and 3600 seconds.
advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)# Configuring the Time to Live Value The information received from a neighbor expires after a specific amount of time (measured in seconds) called a time to live (TTL). The TTL is the product of the LLDPDU transmit interval (hello) and an integer called a multiplier.
Figure 81. The debug lldp detail Command — LLDPDU Packet Dissection Example of debug lldp Command Output with Unrecognized Reserved and Organizational Specific LLDP TLVs The following is an example of LLDPDU with both (Reserved and Organizational specific) unrecognized TLVs.
Table 58. LLDP Configuration MIB Objects MIB Object Category LLDP Variable LLDP MIB Object Description LLDP Configuration adminStatus lldpPortConfigAdminStatus Whether you enable the local LLDP agent for transmit, receive, or both. msgTxHold lldpMessageTxHoldMultiplier Multiplier value. msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs. txInfoTTL lldpTxInfoTTL Time to live for transmitted TLVs.
TLV Type 7 TLV Name System Capabilities 8 Management Address TLV Variable system capabilities enabled capabilities management address length management address subtype management address interface numbering subtype interface number OID System LLDP MIB Object Remote lldpRemSysDesc Local lldpLocSysCapSupported Remote lldpRemSysCapSupported Local lldpLocSysCapEnabled Remote lldpRemSysCapEnabled Local lldpLocManAddrLen Remote lldpRemManAddrLen Local lldpLocManAddrSubtype Remote
Table 61.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object lldpXMedLocXPoEPDPowe rSource Remote lldpXMedRemXPoEPSEPo werSource lldpXMedRemXPoEPDPow erSource Power Priority Local lldpXMedLocXPoEPDPowe rPriority lldpXMedLocXPoEPSEPort PDPriority Remote lldpXMedRemXPoEPSEPo werPriority lldpXMedRemXPoEPDPow erPriority Power Value Local lldpXMedLocXPoEPSEPort PowerAv lldpXMedLocXPoEPDPowe rReq Remote lldpXMedRemXPoEPSEPo werAv lldpXMedRemXPoEPDPow erReq 486 Link Layer Discovery Protocol (LLD
27 Microsoft Network Load Balancing Network load balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems (OSs). NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
• • • The NLB Unicast mode uses switch flooding to transmit all packets to all the servers that are part of the VLAN. When a large volume of traffic is processed, the clustering performance might be impacted in a small way. This limitation is applicable to switches that perform unicast flooding in the software. The ip vlan-flooding command applies globally across the system and for all VLANs.
This setting causes the multicast MAC address to be mapped to the Cluster IP address for the NLB mode of operation of the switch. NOTE: While configuring static ARP for the Cluster IP, provide any one of the interfaces that is used in the static multicast MAC configuration, where the Cluster host is connected. As the switch does not accept only one ARPinterface pair, if you configure static ARP with each egress interface, the switch overwrites the previous egressinterface configuration. 2.
28 Multicast Source Discovery Protocol (MSDP) Multicast source discovery protocol (MSDP) is supported on Dell EMC Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 83.
Implementation Information The Dell EMC Networking OS implementation of MSDP is in accordance with RFC 3618 and Anycast RP is in accordance with RFC 3446. Configure Multicast Source Discovery Protocol Configuring MSDP is a four-step process. 1. Enable an exterior gateway protocol (EGP) with at least two routing domains. Refer to the following figures. The MSDP Sample Configurations show the OSPF-BGP configuration used in this chapter for MSDP.
Figure 84.
Figure 85.
Figure 86.
Figure 87. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains. CONFIGURATION mode ip msdp peer connect-source R3(conf)#ip multicast-msdp R3(conf)#ip msdp peer 192.168.0.
Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache). The system does not create entries in the multicast routing table until there is a local receiver for the corresponding multicast group. R3#show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
Enabling the Rejected Source-Active Cache To cache rejected sources, use the following command. Active sources can be rejected because the RPF check failed, the SA limit is reached, the peer RP is unreachable, or the SA message has a format error. • Cache rejected sources. CONFIGURATION mode ip msdp cache-rejected-sa Accept Source-Active Messages that Fail the RFP Check A default peer is a peer from which active sources are accepted even though they fail the RFP check.
Figure 89.
Figure 90. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check. DellEMC(conf)#ip msdp peer 10.0.50.
3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.65 200.0.1.50 00:33:18 229.0.50.66 24.0.50.66 200.0.1.50 LearnedFrom 10.0.50.2 10.0.50.2 10.0.50.2 Reason Rpf-Fail Rpf-Fail Rpf-Fail Limiting the Source-Active Messages from a Peer To limit the source-active messages from a peer, use the following commands. 1. OPTIONAL: Store sources that are received after the limit is reached in the rejected SA cache.
2. Prevent the system from caching remote sources learned from a specific peer based on source and group. CONFIGURATION mode ip msdp sa-filter list out peer list ext-acl As shown in the following example, R1 is advertising source 10.11.4.2. It is already in the SA cache of R3 when an ingress SA filter is applied to R3. The entry remains in the SA cache until it expires and is not stored in the rejected SA cache. [Router 3] R3(conf)#do show run msdp ! ip multicast-msdp ip msdp peer 192.168.0.
To display the configured SA filters for a peer, use the show ip msdp peer command from EXEC Privilege mode. Logging Changes in Peership States To log changes in peership states, use the following command. • Log peership state changes. CONFIGURATION mode ip msdp log-adjacency-changes Terminating a Peership MSDP uses TCP as its transport protocol. In a peering relationship, the peer with the lower IP address initiates the TCP session, while the peer with the higher IP address listens on port 639.
R3(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 0.0.0.0(0) Connect Source: Lo 0 State: Inactive Up/Down Time: 00:00:04 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none Debugging MSDP To debug MSDP, use the following command. • Display the information exchanged between peers.
Figure 91. MSDP with Anycast RP Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group. CONFIGURATION mode ip pim rp-address 3.
network Reducing Source-Active Message Flooding RPs flood source-active messages to all of their peers away from the RP. When multiple RPs exist within a domain, the RPs forward received active source information back to the originating RP, which violates the RFP rule. You can prevent this unnecessary flooding by creating a mesh-group. A mesh in this context is a topology in which each RP in a set of RPs has a peership with all other RPs in the set.
The following example shows an R2 configuration for MSDP with Anycast RP. ip multicast-routing ! interface TenGigabitEthernet 2/1/1 ip pim sparse-mode ip address 10.11.4.1/24 no shutdown ! interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.1.21/24 no shutdown ! interface TenGigabitEthernet 2/31/1 ip pim sparse-mode ip address 10.11.0.23/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.1/32 no shutdown ! interface Loopback 1 ip address 192.168.0.
network 10.11.6.0/24 area 0 network 192.168.0.3/32 area 0 redistribute static redistribute connected redistribute bgp 200 ! router bgp 200 redistribute ospf 1 neighbor 192.168.0.22 remote-as 100 neighbor 192.168.0.22 ebgp-multihop 255 neighbor 192.168.0.22 update-source Loopback 0 neighbor 192.168.0.22 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.11 connect-source Loopback 0 ip msdp peer 192.168.0.22 connect-source Loopback 0 ip msdp sa-filter out 192.168.0.22 ! ip route 192.168.0.1/32 10.11.0.
! interface TenGigabitEthernet 1/11/1 ip pim sparse-mode ip address 10.11.1.21/24 no shutdown ! interface TenGigabitEthernet 1/31/1 ip pim sparse-mode ip address 10.11.0.23/24 no shutdown ! interface Loopback 0 ip address 192.168.0.2/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.2/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.
! ip route 192.168.0.2/32 10.11.0.23 MSDP Sample Configuration: R4 Running-Config ip multicast-routing ! interface TenGigabitEthernet 1/1/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown ! interface TenGigabitEthernet 1/22/1 ip address 10.10.42.1/24 no shutdown ! interface TenGigabitEthernet 1/31/1 ip pim sparse-mode ip address 10.11.6.43/24 no shutdown ! interface Loopback 0 ip address 192.168.0.4/32 no shutdown ! router ospf 1 network 10.11.5.0/24 area 0 network 10.11.6.0/24 area 0 network 192.
29 Multicast Listener Discovery Protocol Dell Networking OS Supports Multicast Listener Discovery (MLD) protocol. Multicast Listener Discovery (MLD) is a Layer 3 protocol that IPv6 routers use to learn of the multicast receivers that are directly connected to them and the groups in which the receivers are interested. Multicast routing protocols (like PIM) use the information learned from MLD to route multicast traffic to all interested receivers.
Destination Address field). To avoid duplicate reporting, any host that hears a report from another host for the same group in which it itself is interested cancels its report for that group. A host does not have to wait for a General Query to join a group. If a host wants to become a member of a group for which the router is not currently forwarding traffic, it should send an unsolicited report.
| | * * | | +. -+ . . . . . . +-+ | | * * | | * Source Address [N] * | | * * | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version 2 multicast listener reports are sent by IP nodes to report (to neighboring routers) the current multicast listening state, or changes in the multicast listening state, of their interfaces.
| | * Source Address [2] * | | * * | | +-+ . . . . . . . . . +-+ | | * * | | * Source Address [N] * | | * * | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | . . . Auxiliary Data . . .
INTERFACE Mode ipv6 mld version {1 | 2} If you do not configure the MLD version, the system defaults to version 2. The ipv6 mld version command is applicable for MLD snooping-enabled interfaces. Clearing MLD groups Clear a specific group or all groups on an interface from the multicast routing table. To clear MLD groups, use the following command: EXEC Privilege clear ipv6 mld groups Debugging MLD Display Dell Networking OS messages about the MLD process.
Group Address Ff08::12 Interface Vlan 10 Mode MLDv2 Uptime 00:00:12 Expires 00:02:05 Displaying MLD Interfaces Display MLD interfaces.
30 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances. Protocol Overview MSTP — specified in IEEE 802.
• • • • • • Modifying the Interface Parameters Setting STP path cost as constant Configuring an EdgePort Flush MAC Addresses after a Topology Change MSTP Sample Configurations Debugging and Verifying MSTP Configurations Spanning Tree Variations The Dell EMC Networking OS supports four variations of spanning tree, as shown in the following table. Table 62. Spanning Tree Variations Dell EMC Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .
Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands. When you enable MSTP, all physical, VLAN, and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the MSTI 0. • • Within an MSTI, only one path from any bridge to any other bridge is enabled. Bridges block a redundant path by disabling one of the link ports. 1. Enter PROTOCOL MSTP mode. CONFIGURATION mode protocol spanning-tree mstp 2. Enable MSTP.
To view which instance a VLAN is mapped to, use the show spanning-tree mst vlan command from EXEC Privilege mode. DellEMC(conf-mstp)#name my-mstp-region DellEMC(conf-mstp)#exit DellEMC(conf)#do show spanning-tree mst config MST region name: my-mstp-region Revision: 0 MSTI VID 1 100 2 200-300 To view the forwarding/discarding state of the ports participating in an MSTI, use the show spanning-tree msti command from EXEC Privilege mode.
Influencing MSTP Root Selection MSTP determines the root bridge, but you can assign one bridge a lower priority to increase the probability that it becomes the root bridge. To change the bridge priority, use the following command. • Assign a number as the bridge priority. PROTOCOL MSTP mode msti instance bridge-priority priority A lower number increases the probability that the bridge becomes the root bridge. The range is from 0 to 61440, in increments of 4096. The default is 32768.
DellEMC(conf)#do show spanning-tree mst config MST region name: my-mstp-region Revision: 0 MSTI VID 1 100 2 200-300 Modifying Global Parameters The root bridge sets the values for forward-delay, hello-time, max-age, and max-hops and overwrites the values set on other MSTP bridges. • • • • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state.
MSTI 2 bridge-priority 4096 DellEMC(conf)# Modifying the Interface Parameters You can adjust two interface parameters to increase or decrease the probability that a port becomes a forwarding port. • • Port cost is a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port. Port priority influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost.
The following is the example configuration: DELLEMC(conf)#protocol spanning-tree pvst DELLEMC(conf-pvst)#port-channel path-cost custom This command is support in all STP modes such as STP, RSTP, MSTP, and PVST. To change the path cost to achieve new IEEE standard behavior, use no port-channel path-cost custom command. Dell EMC Networking OS behavior does not change when a new member port is added to the port-channel or an existing member port is deleted from the configuration.
To view the enable status of this feature, use the show running-config spanning-tree mstp command from EXEC Privilege mode. MSTP Sample Configurations The running-configurations support the topology shown in the following illustration. The configurations are from Dell EMC Networking OS systems. Figure 93. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1.
interface Vlan 200 no ip address tagged TenGigabitEthernet 1/21,31/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31/1 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown Router 3 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3.
! (Step 2) interface TenGigabitEthernet 3/11/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21/1 no ip address switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown SFTOS Example Running-Configuration This example uses the following steps: 1.
interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • • Display BPDUs. EXEC Privilege mode debug spanning-tree mstp bpdu Display MSTP-triggered topology change messages. debug spanning-tree mstp events To ensure all the necessary parameters match (region name, region version, and VLAN to instance mapping), examine your individual routers.
4w0d4h : MSTP: Received BPDU on Te 2/21/1 : ProtId: 0, Ver: 3, Bpdu Type: MSTP, Flags 0x78 (Indicates MSTP routers are in the [single] region.) CIST Root Bridge Id: 32768:0001.e806.953e, Ext Path Cost: 0 Regional Bridge Id: 32768:0001.e806.953e, CIST Port Id: 128:470 Msg Age: 0, Max Age: 20, Hello: 2, Fwd Delay: 15, Ver1 Len: 0, Ver3 Len: 96 Name: Tahiti, Rev: 123 (MSTP region name and revision), Int Root Path Cost: 0 Rem Hops: 19, Bridge Id: 32768:0001.e8d5.
31 Multicast Features NOTE: Multicast routing is supported on secondary IP addresses; it is not supported on IPv6. NOTE: Multicast routing is supported across default and non-default virtual routing and forwarding (VRFs).
Protocol Ethernet Address PIM-SM 01:00:5e:00:00:0d • • • • The Dell EMC Networking OS implementation of MTRACE is in accordance with IETF draft draft-fenner-traceroute-ipm. Multicast is not supported on secondary IP addresses. If you enable multicast routing, egress Layer 3 ACL is not applied to multicast data traffic. Multicast traffic can be forwarded to a maximum of 15 VLANs with the same outgoing interface.
NOTE: The IN-L3-McastFib CAM partition stores multicast routes and is a separate hardware limit that exists per portpipe. Any software-configured limit may supersede this hardware space limitation. The opposite is also true, the CAM partition might not be exhausted at the time the system-wide route limit is reached using the ip multicast-limit command.
Figure 94. Preventing a Host from Joining a Group The following table lists the location and description shown in the previous illustration. Table 64. Preventing a Host from Joining a Group — Description Location Description 1/21/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.13.
Location Description 2/11/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown 3/11/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.13.
You can configure PIM to switch over to the SPT when the router receives multicast packets at or beyond a specified rate. Table 65. Configuring PIM to Switch Over to the SPT Configuring PIM to Switch Over to the SPT Command Mode IPv4 Configure PIM to switch over to the SPT when the multicast packet rate is at or beyond a specified rate. The keyword infinity directs PIM to never switch to the SPT.
Figure 95. Preventing a Source from Transmitting to a Group The following table lists the location and description shown in the previous illustration. Table 66. Preventing a Source from Transmitting to a Group — Description Location Description 1/21/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31/1 • • • • Interface TenGigabitEthernet 1/31/1 ip pim sparse-mode ip address 10.11.13.
Location Description 2/11/1 • • • • Interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1/1 • • • • Interface TenGigabitEthernet 3/1/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown 3/11/1 • • • • Interface TenGigabitEthernet 3/11/1 ip pim sparse-mode ip address 10.11.13.
Understanding Multicast Traceroute (mtrace) Multicast Traceroute (mtrace) is a multicast diagnostic facility used for tracing multicast paths. Mtrace enables you to trace the path that a multicast packet takes from its source to the destination. When you initiate mtrace from a source to a destination, an mtrace Query packet with IGMP type 0x1F is sent to the last-hop multicast router for the given destination. The mtrace query packet is forwarded hop-by-hop untill it reaches the last-hop router.
the RPF neighbor. When a Dell EMC Networking system is the last hop to the destination, Dell EMC Networking OS sends a response to the query. To print the network path, use the following command. • Print the network path that a multicast packet takes from a multicast source to receiver, for a particular group.
Command Output Description • • • • -4 103.103.103.3 --> Source o (1.1.1.1) Outgoing interface address at that node for the source and group o (PIM) Multicast protocol used at the node to retrieve the information o (Reached RP/Core) Forwarding code in mtrace to denote that RP node is reached o (103.103.103.0/24) Source network and mask. In case (*G) tree is used, this field will have the value as (shared tree).
Scenario destination by using the multicast tables for that group. Output destination 1.1.1.1 via group 226.0.0.3 From source (?) to destination (?) ---------------------------------------------------------------|Hop| OIF IP |Proto| Forwarding Code |Source Network/ Mask| ---------------------------------------------------------------0 1.1.1.1 --> Destination -1 1.1.1.1 PIM Reached RP/Core 103.103.103.0/24 -2 101.101.101.102 PIM 103.103.103.0/24 -3 2.2.2.1 PIM 103.103.103.0/24 -4 103.103.103.
Scenario Output Querying reverse path for source 103.103.103.3 to destination 1.1.1.1 via RPF From source (?) to destination (?) ---------------------------------------------------------------|Hop| OIF IP |Proto| Forwarding Code |Source Network/ Mask| ---------------------------------------------------------------0 1.1.1.1 --> Destination -1 1.1.1.1 PIM 103.103.103.0/24 -2 101.101.101.102 PIM 103.103.103.0/24 -3 2.2.2.1 PIM 103.103.103.0/24 -4 103.103.103.
Scenario is not PIM enabled, the output of the command displays a NO ROUTE error code in the Forwarding Code column. In the command output, the entry for that node in the Source Network/Mask column displays the value as default. If a multicast tree is not formed due to a configuration issue (for example, PIM is not enabled on one of the interfaces on the path), you can invoke a weak mtrace to identify the location in the network where the error has originated. Output Querying reverse path for source 6.6.
Scenario output of the command displays a ‘*’ indicating that no response is received for an mtrace request. The following message appears when the system performs a hopby-hop search: “switching to hop-by-hop:” Output 1.1.1.1 via RPF From source (?) to destination (?) * * * * switching to hop-by-hop: ---------------------------------------------------------------|Hop| OIF IP |Proto| Forwarding Code |Source Network/ Mask| ---------------------------------------------------------------0 1.1.1.
Scenario Output . . . -146 17.17.17.17 PIM No space in packet 99.99.0.0/16 ----------------------------------------------------------------- In a valid scenario, mtrace request packets are expected to be received on the OIF of the node. However, due to incorrect formation of the multicast tree, the packet may be received on a wrong interface. In such a scenario, a corresponding error message is displayed. R1>mtrace 6.6.6.6 4.4.4.5 Type Ctrl-C to abort. Querying reverse path for source 6.6.6.
32 Multicast Listener Discovery Protocol Dell Networking OS Supports Multicast Listener Discovery (MLD) protocol. Multicast Listener Discovery (MLD) is a Layer 3 protocol that IPv6 routers use to learn of the multicast receivers that are directly connected to them and the groups in which the receivers are interested. Multicast routing protocols (like PIM) use the information learned from MLD to route multicast traffic to all interested receivers.
Destination Address field). To avoid duplicate reporting, any host that hears a report from another host for the same group in which it itself is interested cancels its report for that group. A host does not have to wait for a General Query to join a group. If a host wants to become a member of a group for which the router is not currently forwarding traffic, it should send an unsolicited report.
| | * * | | +. -+ . . . . . . +-+ | | * * | | * Source Address [N] * | | * * | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version 2 multicast listener reports are sent by IP nodes to report (to neighboring routers) the current multicast listening state, or changes in the multicast listening state, of their interfaces.
| | * Source Address [2] * | | * * | | +-+ . . . . . . . . . +-+ | | * * | | * Source Address [N] * | | * * | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | . . . Auxiliary Data . . .
To clear MLD groups, use the following command: EXEC Privilege clear ipv6 mld groups Debugging MLD Display Dell Networking OS messages about the MLD process. To display debugging messages, use the following command: EXEC Privilege debug ipv6 mld Explicit Tracking If the Querier does not receive a response to a Multicast-Address-Specific Query, it sends another. Then, after no response, it removes the group entry from the group membership table.
show ipv6 mld interface vlan 20 Dell#show ipv6 mld interface vlan 20 Vlan 20 is up, line protocol is up Inbound MLD access group is not set Internet address is fe80::92b1:1cff:fef4:9b63/64 MLD is enabled on interface MLD query interval is 60 seconds MLD querier timeout is 125 seconds MLD max query response time is 10 seconds MLD last member query response interval is 1000 ms MLD immediate-leave is enabled for all groups MLD activity: 0 joins MLD querying router is 35::1 (this system) MLD version is 2 MLD S
Specify port as connected to multicast router To statically specify or view a port in a VLAN, use the following commands: 1. Statically specify a port in a VLAN as connected to a multicast router. INTERFACE VLAN mode ipv6 mld snooping mrouter 2. View the ports that are connected to multicast routers. EXEC Privilege mode show ipv6 mld snooping mrouter Enable Snooping Explicit Tracking The switch can be a querier, and therefore also has an option of updating the group table through explicit-tracking.
33 Object Tracking IPv4 or IPv6 object tracking is available on Dell EMC Networking OS. Object tracking allows the Dell EMC Networking OS client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes. NOTE: In Dell EMC Networking OS release version 8.4.1.0, object tracking is supported only on VRRP.
Figure 96. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • • UP and DOWN thresholds used to report changes in a route metric. A time delay before changes in a tracked object’s state are reported to a client. Track Layer 2 Interfaces You can create an object to track the line-protocol state of a Layer 2 interface.
A tracked route matches a route in the routing table only if the exact address and prefix length match an entry in the routing table. For example, when configured as a tracked route, 10.0.0.0/24 does not match the routing table entry 10.0.0.0/8. If no route-table entry has the exact address and prefix length, the tracked route is considered to be DOWN.
VRRP Object Tracking As a client, VRRP can track up to 20 objects (including route entries, and Layer 2 and Layer 3 interfaces) in addition to the 12 tracked interfaces supported for each VRRP group. You can assign a unique priority-cost value from 1 to 254 to each tracked VRRP object or group interface. The priority cost is subtracted from the VRRP group priority if a tracked VRRP object is in a DOWN state.
Track 100 Interface TenGigabitEthernet 1/1/1 line-protocol Description: San Jose data center Tracking a Layer 3 Interface You can create an object that tracks the routing status of an IPv4 or IPv6 Layer 3 interface. You can track the routing status of any of the following Layer 3 interfaces: • • • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information.
The following is an example of configuring object tracking for an IPv6 interface: DellEMC(conf)#track 103 interface tengigabitethernet 1/11/1 ipv6 routing DellEMC(conf-track-103)#description Austin access point DellEMC(conf-track-103)#end DellEMC#show track 103 Track 103 Interface TenGigabitEthernet 1/11/1 ipv6 routing Description: Austin access point Track an IPv4/IPv6 Route You can create an object that tracks the reachability or metric of an IPv4 or IPv6 route.
CONFIGURATION mode track object-id {ip route ip-address/prefix-len | ipv6 route ipv6-address/prefix-len} reachability [vrf vrf-name] Valid object IDs are from 1 to 500. Enter an IPv4 address in dotted decimal format; valid IPv4 prefix lengths are from / 0 to /32. Enter an IPv6 address in X:X:X:X::X format; valid IPv6 prefix lengths are from / 0 to /128. (Optional) E-Series only: For an IPv4 route, you can enter a VRF name to specify the virtual routing table to which the tracked route belongs. 2.
To change the refresh interval for tracking an IPv4 or IPv6 route, use the following command. Change the reachability refresh interval for tracking of an IPv4 or IPv6 route. CONFIGURATION mode track reachability refresh interval The refresh interval range is from 0 to 60 seconds. The default is 60 seconds.
The following example configures object tracking on the metric threshold of an IPv4 route: DellEMC(conf)#track 6 ip route 2.1.1.0/24 metric threshold DellEMC(conf-track-6)#delay down 20 DellEMC(conf-track-6)#delay up 20 DellEMC(conf-track-6)#description track ip route metric DellEMC(conf-track-6)#threshold metric down 40 DellEMC(conf-track-6)#threshold metric up 40 DellEMC(conf-track-6)#exit DellEMC(conf)#track 10 ip route 3.1.1.
Example of the show track brief Command Router# show track brief ResId State 1 Resource LastChange IP route reachability Parameter 10.16.0.0/16 Example of the show track resolution Command DellEMC#show track resolution IP Route Resolution ISIS 1 OSPF 1 IPv6 Route Resolution ISIS 1 Example of the show track vrf Command DellEMC#show track vrf red Track 5 IP route 192.168.0.
34 Open Shortest Path First (OSPFv2 and OSPFv3) Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell EMC Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell EMC Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
Figure 97. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.0 and is the core of any AS. All other areas must connect to Area 0. An OSPF backbone is responsible for distributing routing information between areas. It consists of all area border routers, networks not wholly contained in any area, and their attached routers. NOTE: If you configure two non-backbone areas, then you must enable the B bit in OSPF.
Networks and Neighbors As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them. The state (up or down) of those links is important. Routers that share a link become neighbors on that segment. OSPF uses the Hello protocol as a neighbor discovery and keep alive mechanism. After two routers are neighbors, they may proceed to exchange and synchronize their databases, which creates an adjacency.
Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone. The ABR keeps a copy of the link-state database for every area it connects to, so it may keep multiple copies of the link state database.
• • • • • (for example, the ASBR where the Type 5 advertisement originated. The link-state ID for Type 4 LSAs is the router ID of the described ASBR). Type 5: LSA — These LSAs contain information imported into OSPF from other routing processes. They are flooded to all areas, except stub areas. The link-state ID of the Type 5 LSA is the external network number.
Figure 99. Priority and Cost Examples OSPF with Dell EMC Networking OS The Dell EMC Networking OS supports up to 128,000 OSPF routes for OSPFv2. Dell EMC Networking OS version 9.4(0.0) and later support only one OSPFv2 process per VRF. Dell EMC Networking OS version 9.7(0.0) and later support OSPFv3 in VRF. Also, on OSPFv3, Dell EMC Networking OS supports only one OSPFv3 process per VRF. OSPFv2 and OSPFv3 can co-exist but you must configure them individually.
RPM have been downloaded into the forwarding information base (FIB) on the line cards (the data plane) and are still resident. For packets that have existing FIB/CAM entries, forwarding between ingress and egress ports/VLANs, and so on, can continue uninterrupted while the control plane OSPF process comes back to full functionality and rebuilds its routing tables.
Processing SNMP and Sending SNMP Traps Only the process in default vrf can process the SNMP requests and send SNMP traps. NOTE: SNMP gets request corresponding to the OspfNbrOption field in the OspfNbrTable returns a value of 66. RFC-2328 Compliant OSPF Flooding In OSPF, flooding is the most resource-consuming task. The flooding algorithm described in RFC 2328 requires that OSPF flood LSAs on all interfaces, as governed by LSA’s flooding scope (refer to Section 13 of the RFC.
OSPF ACK Packing The OSPF ACK packing feature bundles multiple LS acknowledgements in a single packet, significantly reducing the number of ACK packets transmitted when the number of LSAs increases. This feature also enhances network utilization and reduces the number of small ACK packets sent to a neighboring router. OSPF ACK packing is enabled by default and non-configurable.
Configuration Task List for OSPFv2 (OSPF for IPv4) You can perform the following tasks to configure Open Shortest Path First version 2 (OSPF for IPv4) on the switch. Two of the tasks are mandatory; others are optional.
no shutdown 3. Return to CONFIGURATION mode to enable the OSPFv2 process globally. CONFIGURATION mode router ospf process-id [vrf {vrf name}] • vrf name: enter the keyword VRF and the instance name to tie the OSPF instance to the VRF. All network commands under this OSPF instance are later tied to the VRF instance. The range is from 0 to 65535. The OSPF process ID is the identifying number assigned to the OSPF process. The router ID is the IP address associated with the OSPF process.
network ip-address mask area area-id The IP Address Format is A.B.C.D/M. The area ID range is from 0 to 65535 or A.B.C.D/M. Enable OSPFv2 on Interfaces Enable and configure OSPFv2 on each interface (configure for Layer 3 protocol), and not shutdown. You can also assign OSPFv2 to a Loopback interface as a virtual interface. OSPF functions and features, such as MD5 Authentication, Grace Period, Authentication Wait Time, are assigned on a per interface basis.
Example of Viewing OSPF Status on a Loopback Interface DellEMC#show ip ospf 1 int TenGigabitEthernet 1/23/1 is up, line protocol is up Internet Address 10.168.0.1/24, Area 0.0.0.1 Process ID 1, Router ID 10.168.253.2, Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DROTHER, Priority 1 Designated Router (ID) 10.168.253.5, Interface address 10.168.0.4 Backup Designated Router (ID) 192.168.253.3, Interface address 10.168.0.
Enabling Passive Interfaces A passive interface is one that does not send or receive routing information. Enabling passive interface suppresses routing updates on an interface. Although the passive interface does not send or receive routing updates, the network on that interface is still included in OSPF updates sent via other interfaces. To suppress the interface’s participation on an OSPF interface, use the following command. This command stops the router from sending updates on that interface.
The parameter range is from 1 to 4. The higher the number, the faster the convergence. When disabled, the parameter is set at 0. NOTE: A higher convergence level can result in occasional loss of OSPF adjacency. Generally, convergence level 1 meets most convergence requirements. Only select higher convergence levels following consultation with Dell Technical Support.
CONFIG-INTERFACE mode ip ospf message-digest-key keyid md5 key • • keyid: the range is from 1 to 255. Key: a character string. NOTE: Be sure to write down or otherwise record the key. You cannot learn the key after it is configured. You must be careful when changing this key. • NOTE: You can configure a maximum of six digest keys on an interface. Of the available six digest keys, the switches select the MD5 key that is common. The remaining MD5 keys are unused.
• Set the authentication change wait time in seconds between 0 and 300 for the interface. CONFIG-INTERFACE mode ip ospf auth-change-wait-time seconds This setting is the amount of time OSPF has available to change its interface authentication type. When you configure the auth-change-wait-time, OSPF sends out only the old authentication scheme until the wait timer expires. After the wait timer expires, OSPF sends only the new authentication scheme.
For more information about OSPF graceful restart, refer to the Dell EMC Networking OS Command Line Reference Guide. When you configure a graceful restart on an OSPFv2 router, the show run ospf command displays information similar to the following. DellEMC#show run ospf ! router ospf 1 graceful-restart grace-period 300 graceful-restart role helper-only graceful-restart mode unplanned-only graceful-restart helper-reject 10.1.1.1 graceful-restart helper-reject 20.1.1.1 network 10.0.2.
• • route-map map-name: enter a name of a configured route map. tag tag-value: the range is from 0 to 4294967295. To view the current OSPF configuration, use the show running-config ospf command in EXEC mode or the show config command in ROUTER OSPF mode. DellEMC(conf-router_ospf)#show config ! router ospf 34 network 10.1.2.32 0.0.0.255 area 2.2.2.2 network 10.1.3.24 0.0.0.255 area 3.3.3.
• • • • event: view OSPF event messages. packet: view OSPF packet information. spf: view SPF information. database-timers rate-limit: view the LSAs currently in the queue. DellEMC#show run ospf ! router ospf 4 router-id 4.4.4.4 network 4.4.4.0/28 area 1 ! ipv6 router ospf 999 default-information originate always router-id 10.10.10.10 DellEMC# Sample Configurations for OSPFv2 The following configurations are examples for enabling OSPFv2. These examples are not comprehensive directions.
interface Loopback 10 ip address 192.168.100.100/24 no shutdown OSPF Area 0 — Te 3/1/1 and 3/2/1 router ospf 33333 network 192.168.100.0/24 area 0 network 10.0.13.0/24 area 0 network 10.0.23.0/24 area 0 ! interface Loopback 30 ip address 192.168.100.100/24 no shutdown ! interface TenGigabitEthernet 3/1/1 ip address 10.1.13.3/24 no shutdown ! interface TenGigabitEthernet 3/2/1 ip address 10.2.13.3/24 no shutdown OSPF Area 0 — Te 2/1/1 and 2/2/1 router ospf 22222 network 192.168.100.0/24 area 0 network 10.
Configuration Task List for OSPFv3 (OSPF for IPv6) This section describes the configuration tasks for Open Shortest Path First version 3 (OSPF for IPv6) on the switch. The configuration options of OSPFv3 are the same as those options for OSPFv2, but you may configure OSPFv3 with differently labeled commands. Specify process IDs and areas and include interfaces and addresses in the process. Define areas as stub or totally stubby.
• Specify how the OSPF interface cost is calculated based on the reference bandwidth method. The cost of an interface is calculated as Reference Bandwidth/Interface speed. ROUTER OSPFv3 auto-cost [reference-bandwidth ref-bw] To return to the default bandwidth or to assign cost based on the interface type, use the no auto-cost [referencebandwidth ref-bw] command. • ref-bw: The range is from 1 to 4294967. The default is 100 megabits per second.
• no ipv6 router ospf process-id Reset the OSPFv3 process. EXEC Privilege mode clear ipv6 ospf process Assigning OSPFv3 Process ID and Router ID to a VRF To assign, disable, or reset OSPFv3 on a non-default VRF, use the following commands. • Enable the OSPFv3 process on a non-default VRF and enter OSPFv3 mode. CONFIGURATION mode ipv6 router ospf {process ID}} • The process ID range is from 0 to 65535. Assign the router ID for this OSPFv3 process.
Redistributing Routes You can add routes from other routing instances or protocols to the OSPFv3 process. With the redistribute command, you can include RIP, static, or directly connected routes in the OSPF process. Route redistribution is also supported between OSPF Routing process IDs. To add redistributing routes, use the following command. • Specify which routes are redistributed into the OSPF process.
graceful-restart grace-period seconds • The valid values are from 40 to 1800 seconds. Configure an OSPFv3 interface to not act on the Grace LSAs that it receives from a restarting OSPFv3 neighbor. • INTERFACE mode ipv6 ospf graceful-restart helper-reject Specify the operating mode and type of events that trigger a graceful restart. CONF-IPV6-ROUTER-OSPF mode graceful-restart mode [planned-only | unplanned-only] • • • Planned-only: the OSPFv3 router supports graceful restart only for planned restarts.
AS Scope LSA Cksum sum 0 Originate New LSAS 73 Rx New LSAS 114085 Ext LSA Count 0 Rte Max Eq Cost Paths 5 GR grace-period 180 GR mode planned and unplanned Area 0 database summary Type Brd Rtr Count AS Bdr Rtr Count LSA count Summary LSAs Rtr LSA Count Net LSA Count Inter Area Pfx LSA Count Inter Area Rtr LSA Count Group Mem LSA Count Count/Status 2 2 12010 1 4 3 12000 0 0 The following example shows the show ipv6 ospf database grace-lsa command.
may be used together. The difference between the two mechanisms is the extent of the coverage. ESP only protects IP header fields if they are encapsulated by ESP. You decide the set of IPsec protocols that are employed for authentication and encryption and the ways in which they are employed. When you correctly implement and deploy IPsec, it does not adversely affect users or hosts. AH and ESP are designed to be cryptographic algorithm-independent.
• • • • • • • ipsec spi number: the security policy index (SPI) value. The range is from 256 to 4294967295. MD5 | SHA1: specifies the authentication type: Message Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1). key-encryption-type: (optional) specifies if the key is encrypted. The valid values are 0 (key is not encrypted) or 7 (key is encrypted). • key: specifies the text string used in authentication. All neighboring OSPFv3 routers must share key to exchange information.
Configuring IPSec Authentication for an OSPFv3 Area To configure, remove, or display IPSec authentication for an OSPFv3 area, use the following commands. Prerequisite: Before you enable IPsec authentication on an OSPFv3 area, first enable OSPFv3 globally on the router (refer to Configuration Task List for OSPFv3 (OSPF for IPv6)). The security policy index (SPI) value must be unique to one IPSec security policy (authentication or encryption) on the router.
• • • • • • key-encryption-type: (optional) specifies if the key is encrypted. Valid values: 0 (key is not encrypted) or 7 (key is encrypted). authentication-algorithm: specifies the authentication algorithm to use for encryption. The valid values are MD5 or SHA1. key: specifies the text string used in authentication. All neighboring OSPFv3 routers must share key to exchange information. For MD5 authentication, the key must be 32 hex digits (non-encrypted) or 64 hex digits (encrypted).
Inbound ESP SPI : 501 (0x1F5) Outbound ESP SPI : 501 (0x1F5) Inbound ESP Auth Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97eb7c0c30808825fb5 Outbound ESP Auth Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97eb7c0c30808825fb5 Inbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Outbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Transform set : esp-128-aes esp-sha1-hmac The following examp
• • • • Did you configure the interfaces for Layer 3 correctly? Is the router in the correct area type? Did you include the routes in the OSPF database? Did you include the OSPF routes in the routing table (not just the OSPF database)? Some useful troubleshooting commands are: • • • • • show ipv6 interfaces show ipv6 protocols debug ipv6 ospf events and/or packets show ipv6 neighbors show ipv6 routes Viewing Summary Information To get general route, configuration, links status, and debug information, us
MIB Object OID Description ospfv3IfEntry 1.3.6.1.2.1.191.1.7.1 Contains OSPFv3 interface entry describing one interface from the viewpoint of OSPFv3. ospfv3NbrEntry 1.3.6.1.2.1.191.1.9.1 Contains a table describing all neighbors in the locality of the OSPFv3 router. Viewing the OSPFv3 MIB • To view the OSPFv3 MIB generated by the system, use the following command. snmpwalk -c ospf1 -v2c 10.16.133.129 1.3.6.1.2.1.191.1.1 SNMPv2-SMI::mib-2.191.1.1.1.0 = Gauge32: 336860180 SNMPv2-SMI::mib-2.191.1.1.
35 Policy-based Routing (PBR) Overview When a router receives a packet, the router decides where to forward the packet based on the destination address in the packet, which is used to look up an entry in a routing table. However, in some cases, there may be a need to forward the packet based on other criteria: size, source, protocol type, destination, and so on.
• • Dell EMC Networking OS supports multiple next-hop entries in the redirect lists. Redirect-lists are applied at Ingress. PBR with Redirect-to-Tunnel Option: You can provide a tunnel ID for a redirect rule. In this case, the resolved next hop is the tunnel interface IP. The qualifiers of the rule pertain to the inner IP details. You must provide a tunnel ID for the next hop to be a tunnel interface.
To ensure the permit permit statement or PBR exception is effective, use a lower sequence number, as shown: ip redirect-list rcl0 seq 10 permit ip host 3.3.3.3 any seq 15 redirect 2.2.2.2 ip any any Create a Redirect List To create a redirect list, use the following commands. Create a redirect list by entering the list name. CONFIGURATION mode ip redirect-list redirect-list-name redirect-list-name: 16 characters. To delete the redirect list, use the no ip redirect-list command.
Example: Creating a Rule DellEMC(conf-redirect-list)#redirect ? A.B.C.D Forwarding router's address DellEMC(conf-redirect-list)#redirect 3.3.3.3 ? <0-255> An IP protocol number icmp Internet Control Message Protocol ip Any Internet Protocol tcp Transmission Control Protocol udp User Datagram Protocol DellEMC(conf-redirect-list)#redirect 3.3.3.3 ip ? A.B.C.D Source address any Any source host host A single source host DellEMC(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 ? Mask A.B.C.
To apply a redirect list to an interface, use the following command. You can apply multiple redirect-lists can be applied to a redirect-group. It is also possible to create two or more redirect-groups on one interface for backup purposes. Apply a redirect list (policy-based routing) to an interface. INTERFACE mode ip redirect-group redirect-list-name test l2–switch • • • redirect-list-name is the name of a redirect list to apply to this interface.
1/32/1) seq 15 redirect tunnel 2 udp 155.55.0.0/16 host 144.144.144.144, Track 1 [up], Next-hop reachable (via Te 1/32/1) seq 35 redirect 155.1.1.2 track 5 ip 7.7.7.0/24 8.8.8.0/24, Track 5 [up], Next-hop reachable (via Po 5) seq 30 redirect 155.1.1.2 track 6 icmp host 8.8.8.8 any, Track 5 [up], Next-hop reachable (via Po 5) seq 35 redirect 42.1.1.2 icmp host 8.8.8.8 any, Next-hop reachable (via Vl 20) seq 40 redirect 43.1.1.2 tcp 155.55.2.0/24 222.22.2.
Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23/1)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ! ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.
View Redirect-List GOLD EDGE_ROUTER#show ip redirect-list IP redirect-list GOLD: Defined as: seq 5 redirect 10.99.99.254 ip 192.168.1.0/24 any, Next-hop reachable (via Te 3/23/1), ARP resolved seq 10 redirect 10.99.99.254 ip 192.168.2.
hop reachable (via Vl 20) Applied interfaces: Te 2/28 DellEMC# Creating a PBR list using Explicit Track Objects for Tunnel Interfaces Creating steps for Tunnel Interfaces: DellEMC#configure terminal DellEMC(conf)#interface tunnel 1 DellEMC(conf-if-tu-1)#tunnel destination 40.1.1.2 DellEMC(conf-if-tu-1)#tunnel source 40.1.1.1 DellEMC(conf-if-tu-1)#tunnel mode ipip DellEMC(conf-if-tu-1)#tunnel keepalive 60.1.1.2 DellEMC(conf-if-tu-1)#ip address 60.1.1.
Verify the Applied Redirect Rules: DellEMC#show ip redirect-list explicit_tunnel IP redirect-list explicit_tunnel: Defined as: seq 5 redirect tunnel 1 track 1 tcp 155.55.2.0/24 222.22.2.0/24, Track 1 [up], Next-hop reachable (via Te 1/32) seq 10 redirect tunnel 1 track 1 tcp any any, Track 1 [up], Next-hop reachable (via Te 1/32) seq 15 redirect tunnel 1 track 1 udp 155.55.0.0/16 host 144.144.144.144, Track 1 [up], Nexthop reachable (via Te 1/32) seq 20 redirect tunnel 2 track 2 tcp 155.55.2.0/24 222.22.2.
36 PIM Sparse-Mode (PIM-SM) Implementation Information The following information is necessary for implementing PIM-SM. • • • • • The Dell EMC Networking implementation of PIM-SM is based on IETF Internet Draft draft-ietf-pim-sm-v2-new-05. The platform supports a maximum of 95 IPv4 and IPv6 PIM interfaces and 2000 multicast entries including (*,G), and (S,G) entries. The maximum number of PIM neighbors is the same as the maximum number of PIM-SM interfaces.
Send Multicast Traffic With PIM-SM, all multicast traffic must initially originate from the RP. A source must unicast traffic to the RP so that the RP can learn about the source and create an SPT to it. Then the last-hop DR may create an SPT directly to the source. 1. The source gateway router (first-hop DR) receives the multicast packets and creates an (S,G) entry in its multicast routing table. The first-hop DR encapsulates the initial multicast packets in PIM Register packets and unicasts them to the RP.
INTERFACE mode {ip | ipv6} pim sparse-mode To display which interfaces are enabled with PIM-SM, use the show {ip | ipv6} pim interface command from EXEC Privilege mode. Following is an example of show ip pim interface command output: DellEMC#show ip pim interface Address Interface Ver/ Mode 165.87.34.5 Fo 1/10/1 v2/S 10.1.1.2 Vl 10 v2/S 20.1.1.5 Vl 20 v2/S 165.87.31.200 Vl 30 v2/S Nbr Count 0 1 1 1 Query Intvl 30 30 30 30 DR Prio 1 1 1 1 DR 165.87.34.5 10.1.1.2 20.1.1.5 165.87.31.
(*, 192.1.2.1), uptime 00:29:36, expires 00:03:26, RP 10.87.2.6, flags: SCJ Incoming interface: FortyGigE 1/12/1, RPF neighbor 10.87.3.5 Outgoing interface list: FortyGigE 1/11/1 FortyGigE 1/13/1 (10.87.31.5, 192.1.2.1), uptime 00:01:24, expires 00:02:26, flags: FT Incoming interface: FortyGigE 1/10/1, RPF neighbor 0.0.0.
Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree; every group must have an RP. • Identify an RP by the IP address of a PIM-enabled or Loopback interface. {ip | ipv6} pim rp-address address group-address group-address mask [override] Following is an example of IPv4 configuration: DellEMC#show running-configuration interface loop0 ! interface Loopback 0 ip address 1.1.1.
Following is an example of show ip pim rp mapping command output: DellEMC#show ip pim rp mapping PIM Group-to-RP Mappings Group(s): 224.0.0.0/4, Static RP: 165.87.50.5, v2 Following is an example of show ipv6 pim rp mapping command output: Dell#show ipv6 pim rp mapping PIM Group-to-RP Mappings Group(s): ff00::/8, Static RP: 2001:100::1, v2 Dell# Configuring a Designated Router Multiple PIM-SM routers might be connected to a single local area network (LAN) segment.
0/0 0/0 0/0 0/0 State-Refresh messages sent/received MSDP updates sent/received Null Register messages sent/received Register-stop messages sent/received Data path event summary: 0 no-cache messages received 0 last-hop switchover messages received 0/0 pim-assert messages sent/received 0/0 register messages sent/received DellEMC# Following is an example of show ipv6 pim interface command output: Dell#show ipv6 pim interface Interface Ver/ Nbr Query DR Mode Count Intvl Prio Fo 1/3/1 v2/S 1 30 1 Address : fe
3. If you configure a secondary VLT peer as an E-BSR and in case of ICL flap or failover, the VLT lag will be down resulting a BSM timeout in the PIM domain and a new BSR will be elected. Hence, it is recommended to configure the primary VLT peer as E-BSR. NOTE: BSR configuration in the multicast topology should ensure that secondary VLT node is not selected as E-BSR. If selected as E-BSR during ICL flap or VLT failover, traffic disruption will be reported.
37 PIM Source-Specific Mode (PIM-SSM) PIM source-specific mode (PIM-SSM) is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created. CONFIGURATION mode ip pim ssm-range acl-name To display address ranges in the PIM-SSM range, use the show ip pim ssm-range command from EXEC Privilege mode. R1(conf)#do show run pim ! ip pim rp-address 10.11.12.2 group-address 224.0.0.
R1(conf)#ip igmp ssm-map map 10.11.5.2 R1(conf)#do show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface Mode Uptime 239.0.0.2 Vlan 300 IGMPv2-Compat 00:00:07 Member Ports: Te 1/1 239.0.0.1 Vlan 400 INCLUDE 00:00:10 Never 10.11.4.2 R1(conf)#do show ip igmp ssm-map IGMP Connected Group Membership Group Address Interface Mode Uptime 239.0.0.2 Vlan 300 IGMPv2-Compat 00:00:36 Member Ports: Te 1/1 R1(conf)#do show ip igmp ssm-map 239.0.0.
3. If you configure a secondary VLT peer as an E-BSR and in case of ICL flap or failover, the VLT lag will be down resulting a BSM timeout in the PIM domain and a new BSR will be elected. Hence, it is recommended to configure the primary VLT peer as E-BSR. NOTE: BSR configuration in the multicast topology should ensure that secondary VLT node is not selected as E-BSR. If selected as E-BSR during ICL flap or VLT failover, traffic disruption will be reported.
ip pim [vrf vrf-name] rp-Candidate interface [priority] [acl-name] The specified acl-list is associated to the rp-candidate. NOTE: You can create the ACL list of multicast prefix using the ip access-list standard command.
38 Port Monitoring Port monitoring (also referred to as mirroring ) allows you to monitor ingress and/or egress traffic on specified ports. The mirrored traffic can be sent to a port to which a network analyzer is connected to inspect or troubleshoot the traffic. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
configure up to 128 source ports in a monitoring session. Only one destination port is supported in a monitoring session. The platform supports multiple source-destination statements in a single monitor session. The maximum number of source ports that can be supported in a session is 128. The maximum number of destination ports that can be supported depends on the port mirroring directions as follows: • • • 4 per port pipe, if the four destination ports mirror in one direction, either rx or tx.
Configuring Port Monitoring To configure port monitoring, use the following commands. 1. Verify that the intended monitoring port has no configuration other than no shutdown, as shown in the following example. EXEC Privilege mode show interface 2. Create a monitoring session using the command monitor session from CONFIGURATION mode, as shown in the following example. CONFIGURATION mode monitor session monitor session type rpm/erpm type is an optional keyword, required only for rpm and erpm 3.
In the following example, the host and server are exchanging traffic which passes through the uplink interface 1/1/1. Port 1/1/1 is the monitored port and port 1/32/1 is the destination port, which is configured to only monitor traffic received on tengigabitethernet 1/1/1 (host-originated traffic). Figure 101. Port Monitoring Example Configuring Monitor Multicast Queue To configure monitor QoS multicast queue ID, use the following commands. 1. Configure monitor QoS multicast queue ID.
monitor session session-id 2. Enable flow-based monitoring for a monitoring session. MONITOR SESSION mode flow-based enable 3. Specify the source and destination port and direction of traffic. MONITOR SESSION mode source source—port destination destination-port direction rx 4. Define IP access-list rules that include the monitor keyword. For port monitoring, Dell EMC Networking OS only considers traffic matching rules with the monitor keyword.
Remote port mirroring helps network administrators monitor and analyze traffic to troubleshoot network problems in a time-saving and efficient way. In a remote-port mirroring session, monitored traffic is tagged with a VLAN ID and switched on a user-defined, non-routable L2 VLAN. The VLAN is reserved in the network to carry only mirrored traffic, which is forwarded on all egress ports of the VLAN.
• • • • • • • • • • • BPDU monitoring is not required to use remote port mirroring. A remote port mirroring session mirrors monitored traffic by prefixing the reserved VLAN tag to monitored packets so that they are copied to the reserve VLAN. Mirrored traffic is transported across the network using 802.1Q-in-802.1Q tunneling. The source address, destination address and original VLAN ID of the mirrored packet are preserved with the tagged VLAN header.
• On a source switch on which you configure source ports for remote port mirroring, you can add only one port to the dedicated RPM VLAN which is used to transport mirrored traffic. You can configure multiple ports for the dedicated RPM VLAN on intermediate and destination switches. Displaying Remote-Port Mirroring Configurations To display the current configuration of remote port mirroring for a specified session, enter the show config command in MONITOR SESSION configuration mode.
CONFIGURATION mode interface vlan vlan-id 3. Configure the RSPAN VLAN to be used to transport mirrored traffic in RPM. VLAN INTERFACE mode mode remote-port-mirroring 4. Configure a tagged port to carry mirrored traffic in the VLAN. VLAN INTERFACE mode tagged interface You can repeat this command to configure additional tagged ports for the VLAN. Configuring a source session Following are the steps for configuring a source session on a switch.
Configuration Example of Remote Port Mirroring This example provides a sample configuration of remote port mirroring (RPM) on a source switch, an intermediate switch, and a destination switch based on the following illustration. Figure 103.
Following is a sample configuration of RPM on an a destination switch.
Configuration Example of RPM for port-channel This example provides a sample configuration of remote port mirroring for the port-channel source interface. Configuring Remote Port Mirroring on source switch The below configuration example shows that the source is a source port-channel and the destination is the reserved VLAN (for example, remote-vlan 30).
• You can configure up to four ERPM source sessions on switch. • Configure the system MTU to accommodate the increased size of the ERPM mirrored packet. • The maximum number of source ports you can define in a session is 128. • The system encapsulates the complete ingress or egress data under GRE header, IP header, and outer MAC header and sends it out at the next hop interface as pointed by the routing table.
--------- ------0 Te 1/9/1 remote-ip No Enabled 0 Po 1 remote-ip No Enabled 1 Vl 11 remote-ip No Enabled rx Port 1.1.1.1 7.1.1.2 0 255 No 100 111 tx Port 1.1.1.1 7.1.1.2 0 255 No 100 111 rx Flow 5.1.1.1 3.1.1.2 0 255 No 100 139 The next example shows the configuration of an ERPM session in which VLAN 11 is monitored as the source interface and a MAC ACL filters the monitored ingress traffic.
If the sniffer does not support IP interface, a destination switch will be needed to receive the encapsulated ERPM packet and locally mirror the whole packet to the Sniffer or a Linux Server. Decapsulation of ERPM packets at the Destination IP/ Analyzer • In order to achieve the decapsulation of the original payload from the ERPM header. The below two methods are suggested : 1. Using Network Analyzer • Install any well-known Network Packet Analyzer tool which is open source and free to download.
NOTE: For more information on configuring VLT, see Configuring VLT. VLT Non-fail over Scenario Consider a scenario where port monitoring is configured to mirror traffic on a VLT device's port or LAG to a destination port on some other device (TOR) on the network. When there is no fail over to the VLT peer, the VLTi link (ICL LAG) also receives the mirrored traffic as the VLTi link is added as an implicit member of the RPM vlan.
Scenario RPM Restriction Recommended Solution Mirroring Orphan Ports across VLT Devices — In this scenario, an orphan port on the primary VLT device is mirrored to another orphan port on the secondary VLT device through the ICL LAG. The port analyzer is connected to the secondary VLT device. No restrictions apply to the RPM session. The following example shows the configuration on the primary VLT device:source orphan port destination remote vlan direction rx/tx/both.
39 Per-VLAN Spanning Tree Plus (PVST+) Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). For more information about spanning tree, refer to the Spanning Tree Protocol (STP) chapter. Figure 105. Per-VLAN Spanning Tree The Dell EMC Networking OS supports three other variations of spanning tree, as shown in the following table. Table 73.
Implementation Information • • The Dell EMC Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. The Dell EMC Networking OS implementation of PVST+ uses IEEE 802.1s costs as the default costs (as shown in the following table). Other implementations use IEEE 802.1w costs as the default costs. If you are using Dell EMC Networking systems in a multivendor network, verify that the costs are values you intended.
To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode. Dell_E600(conf-pvst)#show config verbose ! protocol spanning-tree pvst no disable vlan 100 bridge-priority 4096 Influencing PVST+ Root Selection As shown in the previous per-VLAN spanning tree illustration, all VLANs use the same forwarding topology because R2 is elected the root, and all TenGigabitEthernet ports have the same cost.
To display the PVST+ forwarding topology, use the show spanning-tree pvst [vlan vlan-id] command from EXEC Privilege mode. Dell_E600(conf)#do show spanning-tree pvst vlan 100 VLAN 100 Root Identifier has priority 4096, Address 0001.e80d.b6d6 Root Bridge hello time 2, max age 20, forward delay 15 Bridge Identifier has priority 4096, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15 We are the root of VLAN 100 Current root has priority 4096, Address 0001.e80d.
Modifying Interface PVST+ Parameters You can adjust two interface parameters (port cost and port priority) to increase or decrease the probability that a port becomes a forwarding port. • • Port cost — a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port. Port priority — influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost.
shut down when it receives a BPDU. When you only implement bpduguard, although the interface is placed in an Error Disabled state when receiving the BPDU, the physical interface remains up and spanning-tree drops packets in the hardware after a BPDU violation. BPDUs are dropped in the software after receiving the BPDU violation. This feature is the same as PortFast mode in spanning tree. CAUTION: Configure EdgePort only on links connecting to an end station.
Figure 107. PVST+ with Extend System ID • Augment the bridge ID with the VLAN ID. PROTOCOL PVST mode extend system-id DellEMC(conf-pvst)#do show spanning-tree pvst vlan 5 brief VLAN 5 Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32773, Address 0001.e832.73f7 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.
! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/22,32/1 no shutdown ! protocol spanning-tree pvst no disable vlan 100 bridge-priority 4096 Example of PVST+ Configuration (R2) interface TenGigabitEthernet 2/12/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 2/32/1 no ip address switchport no shutdown ! interface Vlan 100 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! interf
40 Quality of Service (QoS) This chapter describes how to use and configure Quality of Service service (QoS) features on the switch. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 75.
Feature Direction Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling Strict-Priority Queueing Weighted Random Early Detection Egress Create WRED Profiles Egress Figure 108.
• Enabling Buffer Statistics Tracking Implementation Information The Dell EMC Networking QoS implementation complies with IEEE 802.1p User Priority Bits for QoS Indication.
Honoring dot1p Priorities on Ingress Traffic By default, Dell EMC Networking OS does not honor dot1p priorities on ingress traffic. You can configure this feature on physical interfaces and port-channels, but you cannot configure it on individual interfaces in a port channel. You can configure service-class dynamic dot1p from CONFIGURATION mode, which applies the configuration to all interfaces. A CONFIGURATION mode service-class dynamic dot1p entry supersedes any INTERFACE entries.
• Apply rate shaping to a queue. QoS Policy mode rate-shape DellEMC#configure terminal DellEMC(conf)#interface tengigabitethernet 1/1/1 DellEMC(conf-if-te-1/1/1)#rate shape 500 50 DellEMC(conf-if-te-1/1/1)#end Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 109.
Creating a Layer 3 Class Map A Layer 3 class map differentiates ingress packets based on the DSCP value or IP precedence, and characteristics defined in an IP ACL. You can also use VLAN IDs and VRF IDs to classify the traffic using layer 3 class-maps. You may specify more than one DSCP and IP precedence value, but only one value must match to trigger a positive match for the class map. NOTE: IPv6 and IP-any class maps cannot match on ACLs or VLANs. Use step 1 or step 2 to start creating a Layer 3 class map.
Creating a Layer 2 Class Map All class maps are Layer 3 by default; however, you can create a Layer 2 class map by specifying the layer2 option with the classmap command. A Layer 2 class map differentiates traffic according to 802.1p value and/or VLAN and/or characteristics defined in a MAC ACL.. Use Step 1 or Step 2 to start creating a Layer 2 class map. 1. Create a match-any class map. CONFIGURATION mode class-map match-any 2. Create a match-all class map. CONFIGURATION mode class-map match-all 3.
class-map match-any ClassAF1 match ip access-group AF1-FB1 set-ip-dscp 10 match ip access-group AF1-FB2 set-ip-dscp 12 match ip dscp 10 set-ip-dscp 14 match ipv6 dscp 20 set-ip-dscp 14 ! class-map match-all ClassAF2 match ip access-group AF2 match ip dscp 18 DellEMC#show running-config ACL ! ip access-list extended AF1-FB1 seq 5 permit ip host 23.64.0.2 any seq 10 deny ip any any ! ip access-list extended AF1-FB2 seq 5 permit ip host 23.64.0.
• • • Because this functionality forcibly marks all the packets matching the specific match criteria as ‘yellow’, Dell EMC Networking OS does not support Policer based coloring and this feature concurrently. If single rate two color policer is configured along with this feature, then by default all packets less than PIR would be considered as “Green” But ‘Green’ packets matching the specific match criteria for which ‘color-marking’ is configured will be over-written and marked as “Yellow”.
Constraints The systems supporting this feature should use only the default global dot1p to queue mapping configuration as described in Dot1p to Queue Mapping Requirement. Creating an Output QoS Policy To create an output QoS policy, use the following commands. 1. Create an output QoS policy. CONFIGURATION mode qos-policy-output 2.
• Specify a WRED profile to yellow and/or green traffic. QOS-POLICY-OUT mode wred For more information, refer to Applying a WRED Profile to Traffic. DSCP Color Maps This section describes how to configure color maps and how to display the color map and color map configuration.
Assign the color map, bat-enclave-map to the interface. DellEMC(conf)# interface tengigabitethernet 1/11/1 DellEMC(conf-if-te-1/11/1)# qos dscp-color-policy bat-enclave-map DellEMC(conf)# interface twentyFiveGigE 1/11 DellEMC(conf-if-te-1/11/1)# qos dscp-color-policy bat-enclave-map Displaying DSCP Color Maps To display DSCP color maps, use the show qos dscp-color-map command in EXEC mode. Examples for Creating a DSCP Color Map Display all DSCP color maps.
Create Policy Maps There are two types of policy maps: input and output. Creating Input Policy Maps There are two types of input policy-maps: Layer 3 and Layer 2. 1. Create a Layer 3 input policy map. CONFIGURATION mode policy-map-input Create a Layer 2 input policy map by specifying the keyword layer2 with the policy-map-input command. 2.
POLICY-MAP-IN mode trust diffserv Honoring dot1p Values on Ingress Packets Dell EMC Networking OS honors dot1p values on ingress packets with the Trust dot1p feature. The following table specifies the queue to which the classified traffic is sent based on the dot1p value. Table 79. Default dot1p to Queue Mapping dot1p Queue ID 0 1 1 0 2 2 3 3 4 4 5 5 6 6 7 7 The dot1p value is also honored for frames on the default VLAN.
• If you apply a service policy that contains an ACL to more than one interface, Dell EMC Networking OS uses ACL optimization to conserve CAM space. The ACL optimization behavior detects when an ACL exists in the CAM rather than writing it to the CAM multiple times. • Apply an input policy map to an interface. INTERFACE mode service-policy input Specify the keyword layer2 if the policy map you are applying a Layer 2 policy map. Creating Output Policy Maps 1. Create an output policy map.
You can optionally include overhead fields in rate metering calculations by enabling QoS rate adjustment. QoS rate adjustment is disabled by default. • Specify the number of bytes of packet overhead to include in rate limiting, policing, and shaping calculations. CONFIGURATION mode qos-rate-adjust overhead-bytes For example, to include the Preamble and SFD, type qos-rate-adjust 8. For variable length overhead fields, know the number of bytes you want to include. The default is disabled.
Hence it is possible to mark both DSCP and Dot1p simultaneously in the L3 Input Qos Policy. You are expected to mark the Dot1p priority when the ingress packets are untagged but go out to the peer as tagged NOTE: L2 qos-policy behavior will be retained and would not be changed, that is we would not allow to set both DSCP and Dot1p in the L2 Input Qos Policy. Example case: Consider that two switches A and B are connected back to back via a tagged interface.
Figure 110. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile. CONFIGURATION mode wred-profile 2. Specify the minimum and maximum threshold values. WRED mode threshold Applying a WRED Profile to Traffic After you create a WRED profile, you must specify to which traffic Dell EMC Networking OS should apply the profile.
Displaying WRED Drop Statistics To display WRED drop statistics, use the following command. • Display the number of packets Dell EMC Networking OS the WRED profile drops.
• test cam-usage service-policy input policy-map {stack-unit } all The output of this command, shown in the following example, displays: • • • The estimated number of CAM entries the policy-map will consume. Whether or not the policy-map can be applied. The number of interfaces in a port-pipe to which the policy-map can be applied. Specifically: • • • Available CAM — the available number of CAM entries in the specified CAM partition for the specified line card or stack-unit portpipe.
peak burst size must also be configured as a measure of number of packets. Similarly, if you configure the peak rate in Kbps, the peak burst size must also be configured as a measure of bytes. Configuring Policy-Based Rate Shaping You can configure the rate shaping for QoS output policies in packets per second (pps). You can explicitly specify the rate shaping functionality for QoS output policies as peak rate and committed rate attributes. You can also configure the peak burst and committed burst sizes.
Global Service Pools With WRED and ECN Settings Support for global service pools is now available. You can configure global service pools that are shared buffer pools accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed. Two service pools are used– one for loss-based queues and the other for lossless (priority-based flow control (PFC)) queues. You can enable WRED and ECN configuration on the global servicepools.
QOS-POLICY-OUT mode DellEMC(conf-qos-policy-out)#wred—profile weight number 2. Configure a WRED profile, and specify the threshold and maximum drop rate. WRED mode DellEMC(conf-wred) #wred—profile thresh-1 DellEMC(conf-wred) #threshold min 100 max 200 max-drop-rate 40 3. Configure another WRED profile, and specify the threshold and maximum drop rate. WRED mode DellEMC(conf-wred) #wred—profile thresh-2 DellEMC(conf-wred) #threshold min 300 max 400 max-drop-rate 80 4.
class-map match-any ecn_0_cmap match ip access-group ecn_0 set-color yellow ! policy-map-input ecn_0_pmap service-queue 0 class-map ecn_0_cmap Applying this policy-map “ecn_0_pmap” will mark all the packets with ‘ecn == 0’ as yellow packets on queue0 (default queue). Classifying Incoming Packets Using ECN and ColorMarking Explicit Congestion Notification (ECN) is a capability that enhances WRED by marking the packets instead of causing WRED to drop them when the threshold value is exceeded.
• • • PSH RST URG You can now use the ‘ecn’ match qualifier along with the above TCP flag for classification.
service-queue 2 class-map class_dscp_40 service-queue 3 class-map class_dscp_50 Approach with explicit ECN match qualifiers for ECN packets: ! ip access-list standard dscp_50_ecn seq 5 permit any dscp 50 ecn 1 seq 10 permit any dscp 50 ecn 2 seq 15 permit any dscp 50 ecn 3 ! ip access-list standard dscp_40_ecn seq 5 permit any dscp 40 ecn 1 seq 10 permit any dscp 40 ecn 2 seq 15 permit any dscp 40 ecn 3 ! ip access-list standard dscp_50_non_ecn seq 5 permit any dscp 50 ecn 0 ! ip access-list standard dscp_4
Managing Hardware Buffer Statistics The memory management unit (MMU) is 12.2 MB in size. It contains approximately 60,000 cells, each of which is 208 bytes in size. MMU also has another portion of 3 MB allocated to it. The entire MMU space is shared across a maximum of 104 logical ports to support the egress admission-control functionality to implement scheduling and shaping on per-port and per-queue levels.
--------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 9 (interface Fo 1/152) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 13 (interface Fo 1/156) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 17 (interface Fo 1/160) ------------------------
UCAST UCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST 674 10 11 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 Quality of Service (QoS)
41 Routing Information Protocol (RIP) The Routing Information Protocol (RIP) tracks distances or hop counts to nearby routers when establishing network connections and is based on a distance-vector algorithm. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter.
Feature Default • Transmit RIPv1 RIP timers • • • • update timer = 30 seconds invalid timer = 180 seconds holddown timer = 180 seconds flush timer = 240 seconds Auto summarization Enabled ECMP paths supported 16 Configuration Information By default, RIP is disabled in Dell EMC Networking OS. To configure RIP, you must use commands in two modes: ROUTER RIP and INTERFACE.
network 10.0.0.0 DellEMC(conf-router_rip)# When the RIP process has learned the RIP routes, use the show ip rip database command in EXEC mode to view those routes. DellEMC#show ip rip database Total number of routes in RIP database: 978 160.160.0.0/16 [120/1] via 29.10.10.12, 00:00:26, Fa 1/4 160.160.0.0/16 auto-summary 2.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/4 2.0.0.0/8 auto-summary 4.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/4 4.0.0.0/8 auto-summary 8.0.0.0/8 [120/1] via 29.10.10.
[120/1] via 29.10.10.12, 00:01:22, Fa 1/49 192.162.3.0/24 auto-summary To disable RIP globally, use the no router rip command in CONFIGURATION mode. Configure RIP on Interfaces When you enable RIP globally on the system, interfaces meeting certain conditions start receiving RIP routes. By default, interfaces that you enable and configure with an IP address in the same subnet as the RIP network address receive RIPv1 and RIPv2 routes and send RIPv1 routes.
• • map-name: the name of a configured route map. Include specific OSPF routes in RIP. ROUTER RIP mode redistribute ospf process-id [match external {1 | 2} | match internal] [metric value] [routemap map-name] Configure the following parameters: • • • process-id: the range is from 1 to 65535. metric: the range is from 0 to 16. map-name: the name of a configured route map. To view the current RIP configuration, use the show running-config command in EXEC mode or the show config command in ROUTER RIP mode.
To configure an interface to receive or send both versions of RIP, include 1 and 2 in the command syntax. The command syntax for sending both RIPv1 and RIPv2 and receiving only RIPv2 is shown in the following example. DellEMC(conf-if)#ip rip send version 1 2 DellEMC(conf-if)#ip rip receive version 2 The following example of the show ip protocols command confirms that both versions are sent out that interface.
Controlling Route Metrics As a distance-vector protocol, RIP uses hop counts to determine the best route, but sometimes the shortest hop count is a route over the lowest-speed link. To manipulate RIP routes so that the routing protocol prefers a different route, manipulate the route by using the offset command. Exercise caution when applying an offset command to routers on a broadcast network, as the router using the offset command is modifying RIP advertisements before sending out those advertisements.
• RIP Configuration Summary Figure 111. RIP Topology Example RIP Configuration on Core2 The following example shows how to configure RIPv2 on a host named Core2. Core2(conf-if-te-1/1/2)# Core2(conf-if-te-1/1/2)#router rip Core2(conf-router_rip)#ver 2 Core2(conf-router_rip)#network 10.200.10.0 Core2(conf-router_rip)#network 10.300.10.0 Core2(conf-router_rip)#network 10.11.10.0 Core2(conf-router_rip)#network 10.11.20.0 Core2(conf-router_rip)#show config ! router rip network 10.0.0.
B - BGP, IN - internal BGP, EX - external BGP,LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ----------- ------- ----------- ----------C 10.11.10.
version 2 Core3(conf-router_rip)# Core 3 RIP Output The examples in this section show the core 2 RIP output. • • • To display Core 3 RIP database, use the show ip rip database command. To display Core 3 RIP setup, use the show ip route command. To display Core 3 RIP activity, use the show ip protocols command. The following example shows the show ip rip database command to view the learned RIP routes on Core 3. Core3#show ip rip database Total number of routes in RIP database: 7 10.11.10.
TenGigabitEthernet 3/24/1 2 2 TenGigabitEthernet 3/23/1 2 2 Routing for Networks: 10.11.20.0 10.11.30.0 192.168.2.0 192.168.1.0 Routing Information Sources: Gateway Distance Last Update 10.11.20.2 120 00:00:22 Distance: (default is 120) Core3# RIP Configuration Summary The following example shows viewing the RIP configuration on Core 2. ! interface TenGigabitEthernet ip address 10.11.10.1/24 no shutdown ! interface TenGigabitEthernet ip address 10.11.20.
network 192.168.1.0 network 192.168.2.
42 Remote Monitoring (RMON) RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell EMC Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment. RMON monitors traffic passing through the router and segment traffic not destined for the router.
[no] rmon hc-alarm number variable interval {delta | absolute} rising-threshold value eventnumber falling-threshold value event-number [owner string] Configure the alarm using the following optional parameters: • • • • • • • • • • number: alarm number, an integer from 1 to 65,535, the value must be unique in the RMON Alarm Table. variable: the MIB object to monitor — the variable must be in SNMP OID format; for example, 1.3.6.1.2.1.1.3.
Configuring RMON Collection Statistics To enable RMON MIB statistics collection on an interface, use the RMON collection statistics command in INTERFACE CONFIGURATION mode. • Enable RMON MIB statistics collection. CONFIGURATION INTERFACE (config-if) mode [no] rmon collection statistics {controlEntry integer} [owner ownername] • • • • controlEntry: specifies the RMON group of statistics using a value. integer: a value from 1 to 65,535 that identifies the RMON Statistics Table.
43 Rapid Spanning Tree Protocol (RSTP) Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). The Dell EMC Networking OS supports three other variations of spanning tree, as shown in the following table. Table 82.
RSTP and VLT Virtual link trunking (VLT) provides loop-free redundant topologies and does not require RSTP. RSTP can cause temporary port state blocking and may cause topology changes after link or node failures. Spanning tree topology changes are distributed to the entire Layer 2 network, which can cause a network-wide flush of learned media access control (MAC) and address resolution protocol (ARP) addresses, requiring these addresses to be re-learned.
protocol spanning-tree rstp 2. Enable RSTP. PROTOCOL SPANNING TREE RSTP mode no disable To disable RSTP globally for all Layer 2 interfaces, enter the disable command from PROTOCOL SPANNING TREE RSTP mode. To verify that RSTP is enabled, use the show config command from PROTOCOL SPANNING TREE RSTP mode. The bold line indicates that RSTP is enabled. DellEMC(conf-rstp)#show config ! protocol spanning-tree rstp no disable DellEMC(conf-rstp)# Figure 112.
Port 378 (TenGigabitEthernet 2/2/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.378 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
• • • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. Hello-time — the time interval in which the bridge sends RSTP BPDUs. Max-age — the length of time the bridge maintains configuration information before it refreshes that information by recomputing the RST topology. NOTE: Dell EMC Networking recommends that only experienced network administrators change the Rapid Spanning Tree group parameters.
Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps, use the following command. • Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Modifying Interface Parameters On interfaces in Layer 2 mode, you can set the port cost and port priority values. • • Port cost — a value that is based on the interface type. The previous table lists the default values. The greater the port cost, the less likely the port is selected to be a forwarding port.
A console message appears when a new root bridge has been assigned. The following example example shows the console message after the bridge-priority command is used to make R2 the root bridge (shown in bold). DellEMC(conf-rstp)#bridge-priority 4096 04:27:59: %RPM0-P:RP2 %SPANMGR-5-STP_ROOT_CHANGE: RSTP root changed. My Bridge ID: 4096:0001.e80b.88bd Old Root: 32768:0001.e801.cbb4 New Root: 4096:0001.e80b.
RSTP fast hellos decrease the hello interval to the order of milliseconds and all timers derived from the hello timer are adjusted accordingly. This feature does not inter-operate with other vendors, and is available only for RSTP. • Configure a hello time on the order of milliseconds. PROTOCOL RSTP mode hello-time milli-second interval The range is from 50 to 950 milliseconds.
44 Software-Defined Networking (SDN) 698 Software-Defined Networking (SDN)
45 Security This chapter describes several ways to provide security to the Dell EMC Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell EMC Networking OS Command Reference Guide.
aaa accounting {commands level | dot1x | exec | rest | suppress | system} {default | name} {start-stop | wait-start | stop-only} {radius | tacacs+} The variables are: • • • • • • • • • • • system: sends accounting information of any other AAA configuration. exec: sends accounting information when a user has logged in to EXEC mode. dot1x: sends accounting information when a dot1x user has logged in to EXEC mode. command level: sends accounting of commands executed at the specified privilege level.
Monitoring AAA Accounting Dell EMC Networking OS does not support periodic interim accounting because the periodic command can cause heavy congestion when many users are logged in to the network. No specific show command exists for TACACS+ accounting. To obtain accounting records displaying information about users currently logged in, use the following command. • Step through all active sessions and print all the accounting records for the actively accounted functions.
Acct-Multi-Session-Id = "1e-3c-39-b3-00-00-00-11-33-44-77-88-6c-b3-d5-5cc" Acct-Status-Type = Start Event-Timestamp = "May 10 2019 12:20:43 CDT" Tmp-String-9 = "ai:" Acct-Unique-Session-Id = "2d6c5beef615d18fa21bbde29411f6d5" Timestamp = 1557508843 EAP STOP accounting record: Fri May 10 12:22:15 2019 NAS-IP-Address = 10.16.133.
RADIUS Accounting attributes The following tables describe the various types of attributes that identify the supplicant sessions: Table 84. RADIUS Accounting Start Record Attributes for CLI user RADIUS Attribute code RADIUS Attribute Description 4 NAS-IP-Address IPv4 address of the NAS. 95 NAS-IPv6–Address IPv6 address of the NAS. NAS Identification Attributes Session Identification Attributes 1 User-Name User name. 5 NAS-Port Port on which session is connected (CLI Session-Id).
CLI event Accounting type Attributes CLI user session disconnects due to Dynamic authorization Stop Stop record attributes with termination cause as Admin Reset (6). Table 87. RADIUS Accounting Start Record Attributes for dot1x supplicant RADIUS Attribute code RADIUS Attribute Description 4 NAS-IP-Address IPv4 address of the NAS. 95 NAS-IPv6–Address IPv6 address of the NAS.
RADIUS Attribute code RADIUS Attribute Description 51 Acct-Link-Count 1 46 Acct-Session Time Time the user has received the service. 49 Acct-Terminate-Cause Reason for session termination. 61 NAS-Port-Type Ethernet NOTE: During the administrative initiated reload and system failover events, the accounting Stop records for the 802.1x authorized supplicants are not sent to RADIUS server. Table 89.
AAA Authentication Dell EMC Networking OS supports a distributed client/server system implemented through authentication, authorization, and accounting (AAA) to help secure networks against unauthorized access.
CONFIGURATION mode line {aux 0 | console 0 | vty number [... end-number]} 3. Assign a method-list-name or the default list to the terminal line. LINE mode login authentication {method-list-name | default} To view the configuration, use the show config command in LINE mode or the show running-config in EXEC Privilege mode. NOTE: Dell EMC Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH).
Server-Side Configuration Using AAA authentication, the switch acts as a RADIUS or TACACS+ client to send authentication requests to a TACACS+ or RADIUS server. • • TACACS+ — When using TACACS+, Dell EMC Networking sends an initial packet with service type SVC_ENABLE, and then sends a second packet with just the password. The TACACS server must have an entry for username $enable$.
If you are using role-based access control (RBAC), only the system administrator and security administrator roles can enable the service obscure-password command. To enable the obscuring of passwords and keys, use the following command. • Turn on the obscuring of passwords and keys in the configuration. CONFIGURATION mode service obscure-passwords Example of Obscuring Password and Keys DellEMC(config)# service obscure-passwords AAA Authorization Dell EMC Networking OS enables AAA new-model by default.
Configuring a Username and Password In Dell EMC Networking OS, you can assign a specific username to limit user access to the system. To configure a username and password, use the following command. • Assign a user name and password. CONFIGURATION mode username name [access-class access-list-name] [nopassword | password [encryption-type] password] [privilege level][secret] Configure the optional and required parameters: • • • • • • • name: Enter a text string up to 63 characters long.
Configure the optional and required parameters: • • • • • • • name: Enter a text string up to 63 characters(maximum) long. access-class access-list-name: Restrict access by access-class.. privilege level: The range is from 0 to 15. nopassword: No password is required for the user to log in. encryption-type: Enter 0 for plain text or 7 for encrypted text. password: Enter a string. Specify the password for the user. Secret: Specify the secret for the user. 2. Configure a password for privilege level.
The following example shows the Telnet session for user john. The show privilege command output confirms that john is in privilege level 8. In EXEC Privilege mode, john can access only the commands listed. In CONFIGURATION mode, john can access only the snmpserver commands. apollo% telnet 172.31.1.53 Trying 172.31.1.53... Connected to 172.31.1.53. Escape character is '^]'.
If you enter disable without a level-number, your security level is 1. RADIUS Remote authentication dial-in user service (RADIUS) is a distributed client/server protocol. This protocol transmits authentication, authorization, and configuration information between a central RADIUS server and a RADIUS client (the Dell EMC Networking system). The system sends user information to the RADIUS server and requests authentication of the user and password.
Auto-Command You can configure the system through the RADIUS server to automatically execute a command when you connect to a specific line. The auto-command command is executed when the user is authenticated and before the prompt appears to the user. • Automatically execute a command. auto-command Privilege Levels Through the RADIUS server, you can configure a privilege level for the user to enter into when they connect to a session. This value is configured on the client system. • Set a privilege level.
• line {aux 0 | console 0 | vty number [end-number]} Enable AAA login authentication for the specified RADIUS method list. LINE mode login authentication {method-list-name | default} • This procedure is mandatory if you are not using default lists. To use the method list.
CONFIGURATION mode radius-server retransmit retries • • retries: the range is from 0 to 100. Default is 3 retries. Configure the time interval the system waits for a RADIUS server host response. CONFIGURATION mode radius-server timeout seconds • seconds: the range is from 0 to 1000. Default is 5 seconds. To view the configuration of RADIUS communication parameters, use the show running-config command in EXEC Privilege mode.
Support for Change of Authorization and Disconnect Messages packets The Network Access Server (NAS) uses RADIUS to authenticate AAA or dot1x user-access to the switch. The RADIUS service does not support unsolicited messages sent from the RADIUS server to the NAS. However, there are many instances in which it is desirable for changes to be made to session characteristics, without requiring the NAS to initiate the exchange.
Table 92. Session Identification Attributes Attribute code Attribute Description 31 Calling-Station-Id (MAC Address) The link address from which session is connected. Table 93.
Radius Attribute code Radius Attribute Description Mandatory 4 NAS-IP-Address IPv4 address of the NAS. No 95 NAS-IPv6–Address IPv6 address of the NAS. No Port on which session is terminated Yes t=26(vendor-specific);l=length;vendor-identificationattribute;Length=value; Data=”cmd=bounce-host-port” Yes Description Mandatory Session Identification Attributes 5 NAS-Port Authorization Attributes 26 Vendor-Specific Table 97.
Radius Attribute code Radius Attribute Description Mandatory 5 NAS-Port Port on which session is terminated No t=26(vendor-specific);l=length;vendor-identificationattribute;Length=value; Data=”cmd=disconnect-user” Yes Authorization Attributes 26 Vendor-Specific Error-cause Values It is possible that a Dynamic Authorization Server cannot honor Disconnect Message request or CoA request packets for some reason. The Error-Cause Attribute provides more detail on the cause of the problem.
• • rejects the CoA-Request containing NAS-IP-Address or NAS-IPV6-Address attribute that does not match the NAS with a CoA-Nak; Error-Cause value is “NAS Identification Mismatch” (403). responds with a CoA-Nak, if it is configured to prohibit honoring of corresponding CoA-Request messages; Error-Cause value is “Administratively Prohibited” (501). NOTE: The Administratively Prohibited Error-Cause is also applicable to following scenarios: • if the dot1x feature is not enabled in the NAS-port.
• • NOTE: Unsupported attributes are the ones that are not mentioned in the RFC 5176 but present in the disconnect message that is received by the NAS. rejects the disconnect message containing NAS-IP-Address or NAS-IPV6-Address attribute that does not match NAS with DM-Nak; Error-Cause value is “NAS Identification Mismatch” (403). responds with a DM-Nak, if the NAS is configured to prohibit honoring of disconnect messages; Error-Cause value is “Administratively Prohibited” (501).
NAS takes the following actions: • • • • • validates the DM request and the session identification attributes. sends a DM-Nak with an error-cause of 402 (missing attribute), if the DM request does not contain the User-Name. sends a DM-Ack, if it is able to successfully disconnect the admin user. sends a DM-Nak with an error-cause value of 506 (resource unavailable), if it is not able to disconnect the admin user.
NAS re-initiates the user authentication state. Dell(conf#)radius dynamic-auth Dell(conf-dynamic-auth#)coa-reauthenticate NAS takes the following actions whenever re-authentication is triggered: • • • • • • • • • • validates the CoA request and the session identification attributes. sends a CoA-Nak with an error-cause of 402 (missing attribute), if the CoA request does not contain both the calling-station-id as well as the NAS-port attribute. sends a CoA-Ack if the re-authentication of the 802.
To initiate shutting down of the 802.1x enabled port, the DAC sends a standard CoA request that contains one or more session identification attributes. NAS uses the NAS-port attributes to identify the 802.1x enabled physical port. 1. Enter the following command to configure the dynamic authorization feature: radius dynamic-auth 2. Enter the following command to disable the 802.1x enabled physical port: coa-disable-port NAS administratively shuts down the 802.1x enabled port that is hosting the session.
Rate-limiting RADIUS packets NAS enables you to allow or reject RADIUS dynamic authorization packets based on the rate-limiting value that you specify. NAS lets you to configure number of RADIUS dynamic authorization packets allowed per minute. The default value is 30 packets per minute. NAS discards the packets, if the number of RADIUS dynamic authorization packets in the current interval cross the configured rate-limit value.
3. Enter LINE mode. CONFIGURATION mode line {aux 0 | console 0 | vty number [end-number]} 4. Assign the method-list to the terminal line. LINE mode login authentication {method-list-name | default} To view the configuration, use the show config in LINE mode or the show running-config tacacs+ command in EXEC Privilege mode. If authentication fails using the primary method, Dell EMC Networking OS employs the second method (or third method, if necessary) automatically.
system closes the Telnet session immediately. The following example demonstrates how to configure the access-class from a TACACS+ server. This configuration ignores the configured access-class on the VTY line. If you have configured a deny10 ACL on the TACACS+ server, the system downloads it and applies it. If the user is found to be coming from the 10.0.0.0 subnet, the system also immediately closes the Telnet connection. Note, that no matter where the user is coming from, they see the login prompt.
Protection from TCP Tiny and Overlapping Fragment Attacks Tiny and overlapping fragment attack is a class of attack where configured ACL entries — denying TCP port-specific traffic — is bypassed and traffic is sent to its destination although denied by the ACL. RFC 1858 and 3128 proposes a countermeasure to the problem. This countermeasure is configured into the line cards and enabled by default.
CONFIGURATION MODE ip ssh server port number 2. On Switch 1, enable SSH. CONFIGURATION MODE copy ssh server enable 3. On Switch 2, invoke SCP. CONFIGURATION MODE copy scp: flash: 4. On Switch 2, in response to prompts, enter the path to the desired file and enter the port number specified in Step 1. EXEC Privilege Mode 5. On the chassis, invoke SCP.
To configure the time or volume rekey threshold at which to re-generate the SSH key during an SSH session, use the ip ssh rekey [time rekey-interval] [volume rekey-limit] command. CONFIGURATION mode. Configure the following parameters: • • rekey-interval: time-based rekey threshold for an SSH session. The range is from 10 to 1440 minutes. The default is 60 minutes. rekey-limit: volume-based rekey threshold for an SSH session. The range is from 1 to 4096 to megabytes. The default is 1024 megabytes.
• • hmac-md5 hmac-md5-96 When FIPS is enabled, the default HMAC algorithm is hmac-sha2-256,hmac-sha1,hmac-sha1-96. Example of Configuring a HMAC Algorithm The following example shows you how to configure a HMAC algorithm list. DellEMC(conf)# ip ssh server mac hmac-sha1-96 Configuring the SSH Server Cipher List To configure the cipher list supported by the SSH server, use the ip ssh server cipher cipher-list command in CONFIGURATION mode.
Secure Shell Authentication Secure Shell (SSH) is enabled by default using the SSH Password Authentication method. Enabling SSH Authentication by Password Authenticate an SSH client by prompting for a password when attempting to connect to the Dell EMC Networking system. This setup is the simplest method of authentication and uses SSH version 2. To enable SSH password authentication, use the following command. • Enable SSH password authentication.
Configuring Host-Based SSH Authentication Authenticate a particular host. This method uses SSH version 2. To configure host-based authentication, use the following commands. 1. Configure RSA Authentication. Refer to Using RSA Authentication of SSH. 2. Create shosts by copying the public RSA key to the file shosts in the directory .ssh, and write the IP address of the host to the file. cp /etc/ssh/ssh_host_rsa_key.pub /.ssh/shosts Refer to the first example. 3.
ssh ip_address DellEMC#ssh 10.16.127.201 ? -c Encryption cipher to use (for v2 clients only) -l User name option -m HMAC algorithm to use (for v2 clients only) -p SSH server port option (default 22) -v SSH protocol version Troubleshooting SSH To troubleshoot SSH, use the following information. You may not bind id_rsa.pub to RSA authentication while logged in via the console. In this case, this message displays:%Error: No username set for this term.
VTY Line Local Authentication and Authorization retrieves the access class from the local database. To use this feature: 1. 2. 3. 4. Create a username. Enter a password. Assign an access class. Enter a privilege level. You can assign line authentication on a per-VTY basis; it is a simple password authentication, using an access-class as authorization. Configure local authentication globally and configure access classes on a per-user basis.
To apply a MAC ACL on a VTY line, use the same access-class command as IP ACLs. The following example shows how to deny incoming connections from subnet 10.0.0.0 without displaying a login prompt.
For greater security, the ability to view event, audit, and security system log is associated with user roles. For information about these topics, see Audit and Security Logs. Privilege-or-Role Mode versus Role-only Mode By default, the system provides access to commands determined by the user’s role or by the user’s privilege level. The user’s role takes precedence over a user’s privilege level.
System-Defined RBAC User Roles By default, the Dell EMC Networking OS provides 4 system defined user roles. You can create up to 8 additional user roles. NOTE: You cannot delete any system defined roles. The system defined user roles are as follows: • • • • Network Operator (netoperator) - This user role has no privilege to modify any configuration on the switch. You can access Exec mode (monitoring) to view the current configuration and status information.
Example of Creating a User Role The configuration in the following example creates a new user role, myrole, which inherits the security administrator (secadmin) permissions. Create a new user role, myrole and inherit security administrator permissions. DellEMC(conf)#userrole myrole inherit secadmin Verify that the user role, myrole, has inherited the security administrator permissions.
The following example allows the security administrator (secadmin) to access Interface mode.
Adding and Deleting Users from a Role To create a user name that is authenticated based on a user role, use the username name password encryption-type password role role-name command in CONFIGURATION mode. Example The following example creates a user name that is authenticated based on a user role. DellEMC(conf)# username john password 0 password role secadmin The following example deletes a user role.
To configure AAA authorization, use the aaa authorization exec command in CONFIGURATION mode. The aaa authorization exec command determines which CLI mode the user will start in for their session; for example, Exec mode or Exec Privilege mode. For information about how to configure authentication for roles, see Configure AAA Authentication for Roles.
authorization exec ucraaa accounting commands role netadmin ucraaa ! Configuring TACACS+ and RADIUS VSA Attributes for RBAC For RBAC and privilege levels, the Dell EMC Networking OS RADIUS and TACACS+ implementation supports two vendor-specific options: privilege level and roles. The Dell EMC Networking vendor-ID is 6027 and the supported option has attribute of type string, which is titled “Force10-avpair”.
Applying an Accounting Method to a Role To apply an accounting method list to a role executed by a user with that user role, use the accounting command in LINE mode. accounting {exec | commands {level | role role-name}} method-list Example of Applying an Accounting Method to a Role The following example applies the accounting default method to the user role secadmin (security administrator).
Role access: sysadmin DellEMC##show role mode configure password-attributes Role access: secadmin,sysadmin DellEMC#show role mode configure interface Role access: netadmin, sysadmin DellEMC#show role mode configure line Role access: netadmin,sysadmin Displaying Information About Users Logged into the Switch To display information on all users logged into the switch, using the show users command in EXEC Privilege mode. The output displays privilege level and/or user role.
CONFIGURATION mode ip ssh challenge-response-authentication enable 2. View the configuration. EXEC mode show ip ssh DellEMC# show ip ssh SSH server : enabled. SSH server version : v2. SSH server vrf : default. SSH server ciphers : aes256-ctr,aes256-cbc,aes192-ctr,aes192-cbc,aes128-ctr,aes128cbc,3des-cbc. SSH server macs : hmac-sha2-256,hmac-sha1,hmac-sha1-96,hmac-md5,hmac-md5-96. SSH server kex algorithms : diffie-hellman-group-exchange-sha1,diffie-hellman-group1sha1,diffie-hellman-group14-sha1.
ICMPv4 message types Router solicitation (10) Time exceeded (11) IP header bad (12) Timestamp request (13) Timestamp reply (14) Information request (15) Information reply (16) Address mask request (17) Address mask reply (18) NOTE: The Dell EMC Networking OS does not suppress the ICMP message type echo request (8). Table 103.
Dell EMC Networking OS Security Hardening The security of a network consists of multiple factors. Apart from access to the device, best practices, and implementing various security features, security also lies with the integrity of the device. If the software itself is compromised, all of the aforementioned methods become ineffective. The Dell EMC Networking OS is enhanced verify whether the OS image and the startup configuration file are altered before loading.
upgrade system DellEMC# upgrade system tftp://10.16.127.35/FTOS-SE-9.11.0.1 A: Hash Value: e42e2548783c2d5db239ea2fa9de4232 !!!!!!!!!!!!!!... Startup Configuration Verification Dell EMC Networking OS comes with startup configuration verification feature. When enabled, it checks the integrity of the startup configuration that the system uses while the system reboots and loads only if it is intact.
Configuring the root User Password For added security, you can change the root user password. If you configure the secure-cli command on the system, the Dell EMC Networking OS resets any previously-configured root access password without displaying any warning message. With the secure-cli command enabled on the system, the CONFIGURATION mode does not display the root access password option. To change the default root user password, follow these steps: • Change the default root user password.
Do you want to configure boot-access password? Proceed [yes/no]:yes DellEMC(conf)# Enabling User Lockout for Failed Login Attempts You can configure the system to lock out local users for a specific period for unsuccessful login attempts. This feature enhances the security of the switch by locking out the local user account if there are more number of unsuccessful login attempts than what is configured using the max-retry parameter.
46 Service Provider Bridging VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. Using only 802.
Figure 113. VLAN Stacking in a Service Provider Network Important Points to Remember • • • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLAN-Stack-enabled VLAN. Dell EMC Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
• • Debugging VLAN Stacking VLAN Stacking in Multi-Vendor Networks Creating Access and Trunk Ports To create access and trunk ports, use the following commands. • • Access port — a port on the service provider edge that directly connects to the customer. An access port may belong to only one service provider VLAN. Trunk port — a port on a service provider bridge that connects to another service provider bridge and is a member of multiple service provider VLANs.
DellEMC# M Te 3/13/1 Configuring the Protocol Type Value for the Outer VLAN Tag The tag protocol identifier (TPID) field of the S-Tag is user-configurable. To set the S-Tag TPID, use the following command. • Select a value for the S-Tag TPID. CONFIGURATION mode vlan-stack protocol-type The default is 9100. To display the S-Tag TPID for a VLAN, use the show running-config command from EXEC privilege mode. Dell EMC Networking OS displays the S-Tag TPID only if it is a non-default value.
* 1 100 101 103 Inactive Inactive Inactive Inactive U Te 1/1/1 T Te 1/1/1 M Te 1/1/1 Debugging VLAN Stacking To debug VLAN stacking, use the following command. • Debug the internal state and membership of a VLAN and its ports. debug member The port notations are as follows: • • • • • MT — stacked trunk MU — stacked access port T — 802.1Q trunk port U — 802.
Figure 114.
Figure 115.
Figure 116. Single and Double-Tag TPID Mismatch VLAN Stacking Packet Drop Precedence VLAN stacking packet-drop precedence is supported on the switch. The drop eligible indicator (DEI) bit in the S-Tag indicates to a service provider bridge which packets it should prefer to drop when congested. Enabling Drop Eligibility Enable drop eligibility globally before you can honor or mark the DEI value. When you enable drop eligibility, DEI mapping or marking takes place according to the defaults.
Ingress Egress Access Port Trunk Port DEI Disabled DEI Enabled Retain outer tag CFI Set outer tag CFI to 0. Retain inner tag CFI Retain inner tag CFI Set outer tag CFI to 0 Set outer tag CFI to 0 To enable drop eligibility globally, use the following command. • Make packets eligible for dropping based on their DEI value. CONFIGURATION mode dei enable By default, packets are colored green, and DEI is marked 0 on egress.
-------------------------------Te 1/1/1 Green 0 Te 1/1/1 Yellow 1 Te 2/9/1 Yellow 0 Te 2/10/1 Yellow 0 Dynamic Mode CoS for VLAN Stacking One of the ways to ensure quality of service for customer VLAN-tagged frames is to use the 802.1p priority bits in the tag to indicate the level of QoS desired. When an S-Tag is added to incoming customer frames, the 802.1p bits on the S-Tag may be configured statically for each customer or derived from the C-Tag using Dynamic Mode CoS.
qos-policy-input 3 layer2 rate-police 40 Likewise, in the following configuration, packets with dot1p priority 0–3 are marked as dot1p 7 in the outer tag and queued to Queue 3. Rate policing is according to qos-policy-input 3. All other packets will have outer dot1p 0 and hence are queued to Queue 1. They are therefore policed according to qos-policy-input 1.
Figure 118. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
Figure 119. VLAN Stacking with L2PT Implementation Information • • • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs. No protocol packets are tunneled when you enable VLAN stacking. L2PT requires the default CAM profile. Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2.
protocol-tunnel stp Specifying a Destination MAC Address for BPDUs By default, Dell EMC Networking OS uses a Dell EMC Networking-unique MAC address for tunneling BPDUs. You can configure another value. To specify a destination MAC address for BPDUs, use the following command. • Overwrite the BPDU with a user-specified destination MAC address when BPDUs are tunneled across the provider network.
The same is true for GARP VLAN registration protocol (GVRP). 802.1ad specifies that provider bridges participating in GVRP use a reserved destination MAC address called the Provider Bridge GVRP Address, 01-80-C2-00-00-0D, to exchange GARP PDUs instead of the GVRP Address, 01-80-C2-00-00-21, specified in 802.1Q. Only bridges in the service provider network use this destination MAC address so these bridges treat GARP PDUs originating from the customer network as normal data frames, rather than consuming them.
47 sFlow sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers.
To avoid the back-off, either increase the global sampling rate or configure all the line card ports with the desired sampling rate even if some ports have no sFlow configured. Important Points to Remember • • • • • • • • • The Dell EMC Networking OS implementation of the sFlow MIB supports sFlow configuration via snmpset. By default, sFlow collection is supported only on data ports.
If you did not enable any extended information, the show output displays the following (shown in bold). DellEMC#show sflow sFlow services are disabled Global default sampling rate: 32768 Global default counter polling interval: 20 Global extended information enabled: none 0 collectors configured 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected 0 sFlow samples dropped due to sub-sampling Enabling and Disabling sFlow on an Interface By default, sFlow is disabled on all interfaces.
Actual sampling rate Counter polling interval Extended max header size :256 Samples rcvd from h/w :16384 :20 :0 Example of the show running-config sflow Command DellEMC#show running-config sflow ! sflow collector 100.1.1.12 agent-addr 100.1.1.
The following example shows the show sflow interface command. DellEMC#show sflow interface tengigabitethernet 1/1/1 Te 1/1/1 sFlow type :Ingress Configured sampling rate :16384 Actual sampling rate :16384 Counter polling interval :20 Extended max header size :128 Samples rcvd from h/w :0 The following example shows the show running-config interface command.
• interval value: in seconds. The range is from 15 to 86400 seconds. The default is 20 seconds. Back-Off Mechanism If the sampling rate for an interface is set to a very low value, the CPU can get overloaded with flow samples under high-traffic conditions. In such a scenario, a binary back-off mechanism gets triggered, which doubles the sampling-rate (halves the number of samples per second) for all interfaces.
Global default counter polling interval: 20 Global extended information enabled: none 0 collectors configured 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected 0 sFlow samples dropped due to sub-sampling Important Points to Remember • • • • • To export extended-gateway data, BGP must learn the IP destination address. If the IP destination address is not learned via BGP the Dell EMC Networking system does not export extended-gateway data.
48 Simple Network Management Protocol (SNMP) The Simple Network Management Protocol (SNMP) is designed to manage devices on IP networks by monitoring device operation, which might require administrator intervention. NOTE: On Dell EMC Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd).
Protocol Overview Network management stations use SNMP to retrieve or alter management data from network elements. A datum of management information is called a managed object; the value of a managed object can be static or variable. Network elements store managed objects in a database called a management information base (MIB). MIBs are hierarchically structured and use object identifiers to address managed objects, but managed objects also have a textual name called an object descriptor.
Keep the following points in mind when you configure the AES128-CFB algorithm for SNMPv3: 1. SNMPv3 authentication provides only the sha option when the FIPS mode is enabled. 2. SNMPv3 privacy provides only the aes128 privacy option when the FIPS mode is enabled. 3. If you attempt to enable or disable FIPS mode and if any SNMPv3 users are previously configured, an error message is displayed stating you must delete all of the SNMP users before changing the FIPS mode. 4.
Creating a Community For SNMPv1 and SNMPv2, create a community to enable the community-based security in Dell EMC Networking OS. The management station generates requests to either retrieve or alter the value of a management object and is called the SNMP manager. A network element that processes SNMP requests is called an SNMP agent. An SNMP community is a group of SNMP agents and managers that are allowed to interact.
NOTE: To give a user read and write privileges, repeat this step for each privilege type. • Configure an SNMP group (with password or privacy privileges). • CONFIGURATION mode snmp-server group group-name {oid-tree} priv read name write name Configure the user with a secure authorization password and privacy password. • CONFIGURATION mode snmp-server user name group-name {oid-tree} auth md5 auth-password priv des56 priv password Configure an SNMPv3 view.
The following example shows reading the value of the many managed objects at one time. > snmpwalk -v 2c -c mycommunity 10.11.131.161 .1.3.6.1.2.1.1 SNMPv2-MIB::sysDescr.0 = STRING: Dell EMC Real Time Operating System Software Dell Operating System Version: 1.0 Dell Application Software Version: E_MAIN4.9.4.0.0 Copyright (c) 1999-2014 by Dell Build Time: Mon May 12 14:02:22 PDT 2008 SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.6027.1.3.
The default is None. Subscribing to Managed Object Value Updates using SNMP By default, the Dell EMC Networking system displays some unsolicited SNMP messages (traps) upon certain events and conditions. You can also configure the system to send the traps to a management station. Traps cannot be saved on the system. Dell EMC Networking OS supports the following three sets of traps: • • • RFC 1157-defined traps — coldStart, warmStart, linkDown, linkUp, authenticationFailure, and egpNeighbborLoss.
NOTE: You must configure notify option for the SNMPv3 traps to work. envmon STACK_STATE: Stack unit %d is in Active State STACKUNITUP: Stack unit 0 is up envmon CARD_SHUTDOWN: %sLine card %d down - %s CARD_DOWN: %sLine card %d down - %s LINECARDUP: %sLine card %d is up CARD_MISMATCH: Mismatch: line card %d is type %s - type %s required.
Instance Id 0 port Te 1/8/1 transitioned from forwarding to discarding state.
envmon temperature MINOR_TEMP: Minor alarm: chassis temperature MINOR_TEMP_CLR: Minor alarm cleared: chassis temperature normal (%s %d temperature is within threshold of %dC) MAJOR_TEMP: Major alarm: chassis temperature high (%s temperature reaches or exceeds threshold of %dC) MAJOR_TEMP_CLR: Major alarm cleared: chassis temperature lower (%s %d temperature is within threshold of %dC) envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FA
Enabling an SNMP Agent to Notify Syslog Server Failure You can configure a network device to send an SNMP trap if an audit processing failure occurs due to loss of connectivity with the syslog server. If a connectivity failure occurs on a syslog server that is configured for reliable transmission, an SNMP trap is sent and a message is displayed on the console.
Copy Configuration Files Using SNMP To do the following, use SNMP from a remote client. • • • copy the running-config file to the startup-config file copy configuration files from the Dell EMC Networking system to a server copy configuration files from a server to the Dell EMC Networking system You can perform all of these tasks using IPv4 or IPv6 addresses. The examples in this section use IPv4 addresses; however, you can substitute IPv6 addresses for the IPv4 addresses in all of the examples.
MIB Object OID Object Values Description copyDestFileName .1.3.6.1.4.1.6027.3.5.1.1.1.1.7 Path (if the file is not in the default directory) and filename. Specifies the name of destination file. copyServerAddress .1.3.6.1.4.1.6027.3.5.1.1.1.1.8 IP Address of the server. The IP address of the server. • copyUserName .1.3.6.1.4.1.6027.3.5.1.1.1.1.9 Username for the server. Username for the FTP, TFTP, or SCP server. • copyUserPassword .1.3.6.1.4.1.6027.3.5.1.1.1.1.10 Password for the server.
Copying Configuration Files via SNMP To copy the running-config to the startup-config from the UNIX machine, use the following command. • Copy the running-config to the startup-config from the UNIX machine. snmpset -v 2c -c public force10system-ip-address copySrcFileType.index i 2 copyDestFileType.index i 3 The following examples show the command syntax using MIB object names and the same command using the object OIDs. In both cases, a unique index number follows the object.
FTOS-COPY-CONFIG-MIB::copyDestFileLocation.110 = INTEGER: ftp(4) FTOS-COPY-CONFIG-MIB::copyServerAddress.110 = IpAddress: 11.11.11.11 FTOS-COPY-CONFIG-MIB::copyUserName.110 = STRING: mylogin FTOS-COPY-CONFIG-MIB::copyUserPassword.110 = STRING: mypass Copying the Startup-Config Files to the Server via TFTP To copy the startup-config to the server via TFTP from the UNIX machine, use the following command. NOTE: Verify that the file exists and its permissions are set to 777.
MIB Object OID Values Description 4 = file exists 5 = file not found 6 = timeout 7 = unknown copyEntryRowStatus .1.3.6.1.4.1.6027.3.5.1.1.1.1.15 Row status Specifies the state of the copy operation. Uses CreateAndGo when you are performing the copy. The state is set to active when the copy is completed. Obtaining a Value for MIB Objects To obtain a value for any of the MIB objects, use the following command. • Get a copy-config MIB object value. snmpset -v 2c -c public -m ./f10-copy-config.
Viewing the Reason for Last System Reboot Using SNMP • To view the reason for last system reboot using SNMP, you can use any one of the applicable SNMP commands: The following example shows a sample output of the snmpwalk command to view the last reset reason. [DellEMC ~]$ snmpwalk -c public -v 2c 10.16.133.172 1.3.6.1.4.1.6027.3.26.1.4.3.1.7 DELL-NETWORKING-CHASSIS-MIB::dellNetProcessorResetReason.stack.1.1 = STRING: Reboot by Software DELL-NETWORKING-CHASSIS-MIB::dellNetProcessorResetReason.stack.2.
The chStackUnitUtilTable MIB table contains the chStackUnitFlashUsageUtil MIB object which contains the flash memory usage percent. The chStackUnitUtilTable is located in f10SSerChassisMib MIB. Viewing the Available Flash Memory Size • To view the available flash memory using SNMP, use the following command. snmpget -v2c -c public 192.168.60.120 .1.3.6.1.4.1.6027.3.26.1.4.4.1.7 enterprises.6027.326.1.4.4.1.7 = Gauge32: 24 The output above displays that 24% of the flash memory is used.
enterprises.6027.3.10.1.2.10.1.3.1.3 enterprises.6027.3.10.1.2.10.1.3.2.1 enterprises.6027.3.10.1.2.10.1.4.1.1 enterprises.6027.3.10.1.2.10.1.4.1.2 enterprises.6027.3.10.1.2.10.1.4.1.3 enterprises.6027.3.10.1.2.10.1.4.2.1 enterprises.6027.3.10.1.2.10.1.5.1.1 enterprises.6027.3.10.1.2.10.1.5.1.2 enterprises.6027.3.10.1.2.10.1.5.1.3 enterprises.6027.3.10.1.2.10.1.5.2.
• 31997973 is the count of red packet-drops (Out of Profile Drops). MIB Support to Display the Available Partitions on Flash Dell EMC Networking provides MIB objects to display the information of various partitions such as /flash, /tmp, /usr/pkg, and /f10/ConfD. The dellNetFlashStorageTable table contains the list of all partitions on disk. The following table lists the related MIB objects: Table 115.
.1.3.6.1.4.1.6027.3.26.1.4.8.1.4.2 = INTEGER: 1 .1.3.6.1.4.1.6027.3.26.1.4.8.1.4.3 = INTEGER: 2545 .1.3.6.1.4.1.6027.3.26.1.4.8.1.4.4 = INTEGER: 400528 .1.3.6.1.4.1.6027.3.26.1.4.8.1.4.5 = INTEGER: 60 .1.3.6.1.4.1.6027.3.26.1.4.8.1.5.1 = INTEGER: 3872014 .1.3.6.1.4.1.6027.3.26.1.4.8.1.5.2 = INTEGER: 56527 .1.3.6.1.4.1.6027.3.26.1.4.8.1.5.3 = INTEGER: 138860 .1.3.6.1.4.1.6027.3.26.1.4.8.1.5.4 = INTEGER: 1608180 .1.3.6.1.4.1.6027.3.26.1.4.8.1.5.5 = INTEGER: 51140 .1.3.6.1.4.1.6027.3.26.1.4.8.1.6.
SNMPv2-SMI::enterprises.6027.3.9.1.5.1.8.1.1.4.20.1.1.1.32.1.4.20.1.1.1.1.4.20.1.1.1 = INTEGER: 1258296320 SNMPv2-SMI::enterprises.6027.3.9.1.5.1.8.1.1.4.20.1.1.2.32.1.4.127.0.0.1.1.4.127.0.0.1 = INTEGER: 0 SNMPv2-SMI::enterprises.6027.3.9.1.5.1.8.1.1.4.30.1.1.0.24.0.0.0.0 = INTEGER: 1275078656 SNMPv2-SMI::enterprises.6027.3.9.1.5.1.8.1.1.4.30.1.1.1.32.1.4.30.1.1.1.1.4.30.1.1.1 = INTEGER: 1275078656 SNMPv2-SMI::enterprises.6027.3.9.1.5.1.8.1.1.4.30.1.1.2.32.1.4.127.0.0.1.1.4.127.0.0.
SNMPv2-SMI::enterprises.6027.3.9.1.5.1.10.1.1.4.20.1.1.2.32.1.4.127.0.0.1.1.4.127.0.0.1 = STRING: "CP" SNMPv2-SMI::enterprises.6027.3.9.1.5.1.10.1.1.4.30.1.1.0.24.0.0.0.0 = STRING: "CP" SNMPv2-SMI::enterprises.6027.3.9.1.5.1.10.1.1.4.30.1.1.1.32.1.4.30.1.1.1.1.4.30.1.1.1 = STRING: "Po 20" SNMPv2-SMI::enterprises.6027.3.9.1.5.1.10.1.1.4.30.1.1.2.32.1.4.127.0.0.1.1.4.127.0.0.1 = STRING: "CP" SNMPv2-SMI::enterprises.6027.3.9.1.5.1.10.1.1.4.70.70.70.0.24.0.0.0.0 = STRING: "CP" SNMPv2-SMI::enterprises.6027.3.9.
SNMPv2-SMI::enterprises.6027.3.9.1.8.0 = Gauge32: 2047 MIB Support for entAliasMappingTable Dell EMC Networking provides a method to map the physical interface to its corresponding ifindex value. The entAliasMappingTable table contains zero or more rows, representing the logical entity mapping and physical component to external MIB identifiers. The following table lists the related MIB objects: Table 118. MIB Objects for entAliasMappingTable MIB Object OID Description entAliasMappingTable 1.3.6.1.2.1.
MIB Object OID Description dot3adAggEntry 1.2.840.10006.300.43.1.1.1.1 Contains a list of Aggregator parameters and indexed by the ifIndex of the Aggregator. dot3adAggMACAddress 1.2.840.10006.300.43.1.1.1.1.1 Contains a six octet read–only value carrying the individual MAC address assigned to the Aggregator. dot3adAggActorSystemPriority 1.2.840.10006.300.43.1.1.1.1.2 Contains a two octet read–write value indicating the priority value associated with the Actor’s system ID.
iso.2.840.10006.300.43.1.1.1.1.2.1258356736 iso.2.840.10006.300.43.1.1.1.1.3.1258356224 iso.2.840.10006.300.43.1.1.1.1.3.1258356736 iso.2.840.10006.300.43.1.1.1.1.4.1258356224 iso.2.840.10006.300.43.1.1.1.1.4.1258356736 iso.2.840.10006.300.43.1.1.1.1.5.1258356224 iso.2.840.10006.300.43.1.1.1.1.5.
MIB Support to Display Organizational Specific Unrecognized LLDP TLVs The lldpRemOrgDefInfoTable contains organizationally defined information that is not recognized by the local neighbor. The following table lists the related MIB objects: Table 121. MIB Objects for Displaying Organizational Specific Unrecognized LLDP TLVs MIB Object OID Description lldpRemOrgDefInfoTable 1.0.8802.1.1.2.1.4.4 This table contains organizationally defined information that is not recognized by the local neighbor.
snmpwalk -v2c -c mycommunity 10.16.150.83 1.0.8802.1.1.2.1.4 iso.0.8802.1.1.2.1.4.1.1.6.0.2113029.2 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.6.0.3161092.6 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.6.0.3161605.2 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.6.0.4209668.6 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.6.0.4210181.2 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.6.0.9437185.2 = INTEGER: 5 iso.0.8802.1.1.2.1.4.1.1.7.0.2113029.2 = STRING: "fortyGigE 1/50" iso.0.8802.1.1.2.1.4.1.1.7.0.3161092.
MIB Object OID Access or Permission Description dellNetGlobalTotalSecureAddres 1.3.6.1.4.1.6027.3.31.1.1.2 s read-only Displays the total number of MAC addresses learnt or configured in the device. dellNetGlobalClearSecureMacAd 1.3.6.1.4.1.6027.3.31.1.1.3 dresses read-write Deletes all the secured MAC addresses in the system based on the specific type (sticky or dynamic).
Enabling and viewing SNMP for port security To enable or view DELL-NETWORKING-PORT-SECURITY-MIB, configure snmp-server in read-write mode using the snmp-server community public rw command. You can enable the port security feature on the Dell EMC Networking OS using the snmpset command. Also, you can view if the port security feature is enabled or disabled using the snmpwalk command. To configure dellNetPortSecIfSecureMacLimit as 100 on an interface whose ifIndex is 2101252, use the following command.
MIB objects for configuring MAC addresses This section describes about the MIB table dellNetPortSecSecureMacAddrTable that contains the MAC database of the system. The table is indexed by the following parameters: • • MAC Address (Octet string of length 6 and MAC address ( in decimal) as value VLAN ID Table 126. MIB Objects for configuring MAC addresses MIB Object OID Access or Permission Description dellNetSecureMacIfIndex 1.3.6.1.4.1.6027.3.31.1.3.1.1.
Displaying the Ports in a VLAN Dell EMC Networking OS identifies VLAN interfaces using an interface index number that is displayed in the output of the show interface vlan command. Add Tagged and Untagged Ports to a VLAN The value dot1qVlanStaticEgressPorts object is an array of all VLAN members. The dot1qVlanStaticUntaggedPorts object is an array of only untagged VLAN members. All VLAN members that are not in dot1qVlanStaticUntaggedPorts are tagged.
The following OIDs are configurable through the snmpset command. The node OID is 1.3.6.1.4.1.6027.3.18 F10-ISIS-MIB::f10IsisSysOloadSetOverload F10-ISIS-MIB::f10IsisSysOloadSetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadWaitForBgp F10-ISIS-MIB::f10IsisSysOloadV6SetOverload F10-ISIS-MIB::f10IsisSysOloadV6SetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadV6WaitForBgp To enable overload bit for IPv4 set 1.3.6.1.4.1.6027.3.18.1.1 and IPv6 set 1.3.6.1.4.1.6027.3.18.1.4 To set time to wait set 1.3.6.1.4.1.
In the following example, R1 has one dynamic MAC address, learned off of port TenGigabitEthernet 1/21/1, which a member of the default VLAN, VLAN 1. The SNMP walk returns the values for dot1dTpFdbAddress, dot1dTpFdbPort, and dot1dTpFdbStatus. Each object comprises an OID concatenated with an instance number. In the case of these objects, the instance number is the decimal equivalent of the MAC address; derive the instance number by converting each hex pair to its decimal equivalent.
MIB Objects for Viewing the System Image on Flash Partitions To view the system image on Flash Partition A, use the chSysSwInPartitionAImgVers object or, to view the system image on Flash Partition B, use the chSysSwInPartitionBImgVers object. Table 128. MIB Objects for Viewing the System Image on Flash Partitions MIB Object OID Description MIB chSysSwInPartitionAImgVers 1.3.6.1.4.1.6027.3.10.1.2.8.1.11 List the version string of the system image in Flash Partition A.
• snmp-server context cx1 • snmp-server context cx2 • snmp-server group admingroup 3 auth read readview write writeview • snmp-server group admingroup 3 auth read readview context cx1 • snmp-server group admingroup 3 auth read readview context cx2 • snmp-server user admin admingroup 3 auth md5 helloworld • snmp mib community-map VRF1 context cx1 • snmp mib community-map VRF2 context cx2 • snmp-server view readview .1 included • snmp-server view writeview .1 included 2.
Monitor Port-Channels To check the status of a Layer 2 port-channel, use f10LinkAggMib (.1.3.6.1.4.1.6027.3.2). In the following example, Po 1 is a switchport and Po 2 is in Layer 3 mode. Example of SNMP Trap for Monitored Port-Channels [senthilnathan@lithium ~]$ snmpwalk -v 2c -c public 10.11.1.1 .1.3.6.1.4.1.6027.3.2.1.1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.1.1 = INTEGER: 1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.1.2 = INTEGER: 2 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.2.
Troubleshooting SNMP Operation When you use SNMP to retrieve management data from an SNMP agent on a Dell EMC Networking router, take into account the following behavior. • When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the output for echo replies may be incorrectly displayed. To correctly display this information under ICMP statistics, use the show ip traffic command.
Field (OID) Description SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.10 Transmit Power Lane3 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.11 Transmit Power Lane4 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.12 Receive Power Lane1 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.13 Receive Power Lane2 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.14 Receive Power Lane3 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.15 Receive Power Lane4 SNMPv2-SMI::enterprises.6027.3.11.1.3.1.1.
49 Stacking Using the Dell EMC Networking OS stacking feature, you can interconnect multiple switch units with stacking ports or front end user ports. The stack becomes manageable as a single switch through the stack management unit. The system accepts Unit ID numbers from 1 to 6 and it supports stacking up to six units.
Stack Master Election The stack elects a master and standby unit at bootup time based on two criteria. • • Unit priority — User-configurable. The range is from 1 to 14. A higher value (14) means a higher priority. The default is 0. By removing the stack-unit priority using the no stack-unit priority command, you can set the priority back to the default value of zero.
Virtual IP You can manage the stack using a single IP, known as a virtual IP, that is retained in the stack even after a failover. The virtual IP address is used to log in to the current master unit of the stack. Both IPv4 and IPv6 addresses are supported as virtual IPs. Use the following command to configure a virtual IP: Dell(conf)#virtual-ip {ip-address | ipv6–address | dhcp} Failover Roles If the stack master fails (for example, is powered off), it is removed from the stack topology.
5 Member not present 6 Member not present 7 Member not present [output omitted] Stack#show system stack-unit 1 | grep priority Master priority : 0 Stack#show system stack-unit 2 | grep priority Master priority : 0 Example of Adding a Standalone with a Lower MAC Address and Equal Priority to a Stack Stacking LAG When multiple links are used between stack units, Dell EMC Networking OS automatically bundles them in a stacking LAG to provide aggregated throughput and redundancy.
High Availability on Stacks Stacks have master and standby management units analogous to Dell EMC Networking route processor modules (RPM). The master unit synchronizes the running configuration and protocol states so that the system fails over in the event of a hardware or software fault on the master unit. In such an event, or when the master unit is removed, the standby unit becomes the stack manager and Dell EMC Networking OS elects a new standby unit.
Stacking Installation Tasks The following are the stacking installation tasks. • • • Create a Stack Add Units to an Existing Stack Split a Stack Create a Stack No configuration is allowed on front end ports used for stacking. Stacking can be made between 40G ports of two units. The stack links between the two units are grouped into a single LAG. Stack Group/Port Numbers By default, each unit in Standalone mode is numbered stack-unit 1.
Enabling Front End Port Stacking To enable the front ports on a unit for stacking, use the following commands. NOTE: You can stack a maximum of eight 10G stack ports. 1. Assign a stack group for each unit. CONFIGURATION mode stack-unit id stack-group id Begin with the first port on the management unit. Next, configure both ports on each subsequent unit. Finally, return to the management unit and configure the last port. The range is from 0 to 31. 2. Save the stacking configuration on the ports.
Figure 122. Creating a new stack In the above example, stack unit 1 is the master management unit, stack unit 2 is the standby unit. The cables are connected to each unit.
-- Power Supplies -Unit Bay Status Type FanStatus -------------------------------------1 1 absent absent 1 2 up AC up 2 1 down UNKNOWN down 2 2 up AC up 3 1 absent absent 3 2 up AC up 4 1 absent absent 4 2 up AC up -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed ----------------------------------------1 1 up up 9360 up 9360 1 2 up up 9360 up 9360 2 1 up up 7680 up 7680 2 2 up up 7920 up 7680 3 1 up up 9360 up 9360 3 2 up up 9360 up 9360 4 1 up up 9120 up 9120 4 2 up up 9120 up 9360 Speed in RPM Ad
The following example shows adding a stack unit with a conflicting stack number (after).
Merge Two Stacks You may merge two stacks while they are powered and online. To merge two stacks, connect one stack to the other using user port cables from the front end user portusing the mini-SAS cables from the stacking ports. • • • • Dell EMC Networking OS selects a master stack manager from the two existing managers based on the priority of the stack. Dell EMC Networking OS resets all the units in the losing stack; they all become stack members.
Creating a Virtual Stack Unit on a Stack Use virtual stack units to configure ports on the stack before adding a new unit. • Create a virtual stack unit. CONFIGURATION mode stack-unit stack-unit-number provision S4048–ONS6000–ON Displaying Information about a Stack To display information about the stack, use the following command. • Display for stack-identity, status, and hardware information on every unit in a stack.
Speed in RPM The following is an example of the show system brief command to view the stack summary information.
The unit with the numerically highest priority is elected the master management unit, and the unit with the second highest priority is the standby unit. The range is from 1 to 14. The default is 0. Managing Redundancy on a Stack Use the following commands to manage the redundancy on a stack. • Reset the current management unit and make the standby unit the new master unit. EXEC Privilege mode redundancy force-failover stack-unit • A new standby is elected.
Remove Units or Front End Ports from a Stack To remove units or front end ports from a stack, use the following instructions. • • Removing a Unit from a Stack Removing Front End Port Stacking Removing a Unit from a Stack The running-configuration and startup-configuration are synchronized on all stack units. A stack member that is disconnected from the stack maintains this configuration. To remove a stack member from the stack, disconnect the stacking cables from the unit.
• Recover from a Card Problem State on a Stack Recover from Stack Link Flaps Stack link integrity monitoring enables units to monitor their own stack ports and disable any stack port that flaps five times within 10 seconds. Dell EMC Networking OS displays console messages for the local and remote members of a flapping link, and on the primary (master) and standby management units as KERN-2-INT messages if the flapping port belongs to either of these units.
50 Storm Control Storm control allows you to control unknown-unicast, muticast, and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell EMC Networking Operating System (OS) Behavior: Dell EMC Networking OS supports unknown-unicast, muticast, and broadcast control for Layer 2 and Layer 3 traffic. To view the storm control broadcast configuration show storm-control broadcast | multicast | unknown-unicast | pfc-llfc[interface] command.
• storm-control broadcast packets_per_second in Configure the packets per second of multicast traffic allowed on C-Series or S-Series interface (ingress only) network only. • INTERFACE mode storm-control multicast packets_per_second in Shut down the port if it receives the PFC/LLFC packets more than the configured rate. INTERFACE mode storm-control pfc-llfc pps in shutdown NOTE: PFC/LLFC storm control enabled interface disables the interfaces if it receives continuous PFC/LLFC packets.
• You can restore the queue when additional PFC packets for a particular priority are not received for a specified period of time. Use the queue-drop backoff-on-norxpfc polling-count command to remove the queue-drop state if additional PFCs are not received after the specified number of polling is done. For more information about the above commands, see the Dell EMC Networking OS Command Line Reference Guide.
Te 0/80 4 5 6 3 4 5 6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DellEMC# Storm Control 833
51 Spanning Tree Protocol (STP) The spanning tree protocol (STP) is supported on Dell EMC Networking OS.
• • • • • Enabling PortFast Prevent Network Disruptions with BPDU Guard STP Root Guard Enabling SNMP Traps for Root Elections and Topology Changes Configuring Spanning Trees as Hitless Important Points to Remember • • • • • STP is disabled by default. The Dell EMC Networking OS supports only one spanning tree instance (0). For multiple instances, enable the multiple spanning tree protocol (MSTP) or per-VLAN spanning tree plus (PVST+). You may only enable one flavor of spanning tree at any one time.
1. If the interface has been assigned an IP address, remove it. INTERFACE mode no ip address 2. Place the interface in Layer 2 mode. INTERFACE switchport 3. Enable the interface. INTERFACE mode no shutdown To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode.
CONFIGURATION mode protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
Adding an Interface to the Spanning Tree Group To add a Layer 2 interface to the spanning tree topology, use the following command. • Enable spanning tree on a Layer 2 interface. INTERFACE mode spanning-tree 0 Modifying Global Parameters You can modify the spanning tree parameters. The root bridge sets the values for forward-delay, hello-time, and max-age and overwrites the values set on other bridges participating in STP.
To view the current values for global parameters, use the show spanning-tree 0 command from EXEC privilege mode. Refer to the second example in Enabling Spanning Tree Protocol Globally. Modifying Interface STP Parameters You can set the port cost and port priority values of interfaces in Layer 2 mode. • • Port cost — a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port.
Prevent Network Disruptions with BPDU Guard Configure the Portfast (and Edgeport, in the case of RSTP, PVST+, and MSTP) feature on ports that connect to end stations. End stations do not generate BPDUs, so ports configured with Portfast/ Edgport (edgeports) do not expect to receive BDPUs. If an edgeport does receive a BPDU, it likely means that it is connected to another part of the network, which can negatively affect the STP topology.
Figure 125. Enabling BPDU Guard Dell EMC Networking OS Behavior BPDU guard: • • is used on edgeports and blocks all traffic on edgeport if it receives a BPDU. drops the BPDU after it reaches the RP and generates a console message. Example of Blocked BPDUs DellEMC(conf-if-te-1/7/1)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32768, Address 0001.e805.fb07 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32768, Address 0001.e85d.
Selecting STP Root The STP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it becomes the root bridge. You can also specify that a bridge is the root or the secondary root. To change the bridge priority or specify that a bridge is the root or secondary root, use the following command. • Assign a number as the bridge priority or designate it as the root or secondary root.
Figure 126. STP Root Guard Prevents Bridging Loops Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell EMC Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • • • • • Root guard is supported on any STP-enabled port or port-channel interface except when used as a stacking port.
To verify the STP root guard configuration on a port or port-channel interface, use the show spanning-tree 0 guard [interface interface] command in a global configuration mode. Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps individually or collectively, use the following commands. • • Enable SNMP traps for spanning tree state changes. snmp-server enable traps stp Enable SNMP traps for RSTP, MSTP, and PVST+ collectively.
Figure 127. STP Loop Guard Prevents Forwarding Loops Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis. The following conditions apply to a port enabled with loop guard: • • Loop guard is supported on any STP-enabled port or port-channel interface.
• • If no BPDU is received from a remote device, loop guard places the port in a Loop-Inconsistent Blocking state and no traffic is forwarded on the port. When used in a PVST+ network, STP loop guard is performed per-port or per-port channel at a VLAN level. If no BPDUs are received on a VLAN interface, the port or port-channel transitions to a Loop-Inconsistent (Blocking) state only for this VLAN. To enable a loop guard on an STP-enabled port or port-channel interface, use the following command.
52 SupportAssist SupportAssist sends troubleshooting data securely to Dell. SupportAssist in this Dell EMC Networking OS release does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports. SupportAssist requires Dell EMC Networking OS 9.9(0.0) and SmartScripts 9.7 or later to be installed on the Dell EMC Networking device. For more information on SmartScripts, see Dell EMC Networking Open Automation guide. Figure 128.
Enable the SupportAssist service. CONFIGURATION mode support-assist activate DellEMC(conf)#support-assist activate This command guides you through steps to configure SupportAssist. Configuring SupportAssist Manually To manually configure SupportAssist service, use the following commands. 1. Accept the end-user license agreement (EULA). CONFIGURATION mode eula-consent {support-assist} {accept | reject} NOTE: Once accepted, you do not have to accept the EULA again.
support-assist DellEMC(conf)#support-assist DellEMC(conf-supportassist)# 3. (Optional) Configure the contact information for the company. SUPPORTASSIST mode contact-company name {company-name}[company-next-name] ... [company-next-name] DellEMC(conf)#support-assist DellEMC(conf-supportassist)#contact-company name test DellEMC(conf-supportassist-cmpy-test)# 4. (Optional) Configure the contact name for an individual.
[no] activity {full-transfer|core-transfer|event-transfer} DellEMC(conf-supportassist)#activity full-transfer DellEMC(conf-supportassist-act-full-transfer)# DellEMC(conf-supportassist)#activity core-transfer DellEMC(conf-supportassist-act-core-transfer)# DellEMC(conf-supportassist)#activity event-transfer DellEMC(conf-supportassist-act-event-transfer)# 2. Copy an action-manifest file for an activity to the system.
[no] enable DellEMC(conf-supportassist-act-full-transfer)#enable DellEMC(conf-supportassist-act-full-transfer)# DellEMC(conf-supportassist-act-core-transfer)#enable DellEMC(conf-supportassist-act-core-transfer)# DellEMC(conf-supportassist-act-event-transfer)#enable DellEMC(conf-supportassist-act-event-transfer)# Configuring SupportAssist Company SupportAssist Company mode allows you to configure name, address and territory information of the company.
SUPPORTASSIST PERSON mode [no] email-address primary email-address [alternate email-address] DellEMC(conf-supportassist-pers-john_doe)#email-address primary jdoe@mycompany.com DellEMC(conf-supportassist-pers-john_doe)# 3. Configure phone numbers of the contact person. SUPPORTASSIST PERSON mode [no] phone primary phone [alternate phone] DellEMC(conf-supportassist-pers-john_doe)#phone primary +919999999999 DellEMC(conf-supportassist-pers-john_doe)# 4. Configure the preferred method for contacting the person.
[no] url uniform-resource-locator DellEMC(conf-supportassist-serv-default)#url https://192.168.1.1/index.htm DellEMC(conf-supportassist-serv-default)# Viewing SupportAssist Configuration To view the SupportAssist configurations, use the following commands: 1. Display information on the SupportAssist feature status including any activities, status of communication, last time communication sent, and so on.
show eula-consent {support-assist | other feature} DellEMC#show eula-consent support-assist SupportAssist EULA has been: Accepted Additional information about the SupportAssist EULA is as follows: By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
53 System Time and Date System time and date settings and the network time protocol (NTP) are supported on Dell EMC Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell EMC Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. The Dell EMC Networking OS supports reaching an NTP server through different VRFs. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
Protocol Overview The NTP messages to one or more servers and processes the replies as received. The server interchanges addresses and ports, fills in or overwrites certain fields in the message, recalculates the checksum, and returns it immediately. Information included in the NTP message allows each client/server peer to determine the timekeeping characteristics of its other peers, including the expected accuracies of their clocks.
To display the system clock state with respect to NTP, use the show ntp status command from EXEC Privilege mode. DellEMC#show ntp status Clock is synchronized, stratum 4, reference is 10.16.151.117, vrf-id is 0 frequency is -44.862 ppm, stability is 0.050 ppm, precision is -18 reference time deeef7ef.85eeaa10 Tue, Jul 10 2018 9:16:31.523 UTC clock offset is -0.167449 msec, root delay is 149.194 msec root dispersion is 54.557 msec, peer dispersion is 0.
• • • • For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. For the Management interface, enter the keyword ManagementEthernet then the slot/port information. For a port channel interface, enter the keywords port-channel then a number. For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. To view the configuration, use the show running-config ntp command in EXEC privilege mode (refer to the example in Configuring NTP Authentication).
To configure the switch as NTP Server use the ntp master command. stratum number identifies the NTP Server's hierarchy. The following example shows configuring an NTP server. Dell EMC(conf)#show running-config ntp ! ntp master ntp server 10.16.127.44 ntp server 10.16.127.86 ntp server 10.16.127.
To view the NTP configuration, use the show running-config ntp command in EXEC privilege mode. The following example shows an encrypted authentication key (in bold). All keys are encrypted. DellEMC#show running ntp ! ntp authenticate ntp authentication-key 345 md5 5A60910F3D211F02 ntp server 11.1.1.1 version 3 ntp trusted-key 345 DellEMC# Configuring NTP control key password The Network Time Protocal daemon (NTPD) design uses NTPQ to configure NTPD.
EXEC Privilege mode clock set time month day year • • • • time: enter the time in hours:minutes:seconds. For the hour variable, use the 24-hour format; for example, 17:15:00 is 5:15 pm. month: enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. day: enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year.
• • • • • end-month: enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. end-day: enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. end-year: enter a four-digit number as the year. The range is from 1993 to 2035. end-time: enter the time in hours:minutes.
pacific Sat Nov 7 2009" NOTE: If you enter after entering the recurring command parameter, and you have already set a one-time daylight saving time/date, the system uses that time and date as the recurring setting. The following example shows the clock summer-time recurring parameters.
54 Tunneling Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, open shortest path first (OSPF) v2, and OSPFv3 are supported. Internet control message protocol (ICMP) error relay, PATH MTU transmission, and fragmented packets are not supported.
tunnel mode ipv6ip no shutdown The following sample configuration shows a tunnel configured in IPIP mode (IPv4 tunnel carries IPv4 and IPv6 traffic): DellEMC(conf)#interface tunnel 3 DellEMC(conf-if-tu-3)#tunnel source 5::5 DellEMC(conf-if-tu-3)#tunnel destination 8::9 DellEMC(conf-if-tu-3)#tunnel mode ipv6 DellEMC(conf-if-tu-3)#ip address 3.1.1.1/24 DellEMC(conf-if-tu-3)#ipv6 address 3::1/64 DellEMC(conf-if-tu-3)#no shutdown DellEMC(conf-if-tu-3)#show config ! interface Tunnel 3 ip address 3.1.1.
interface TenGigabitEthernet 1/1/1 ip address 20.1.1.1/24 ipv6 address 20:1::1/64 no shutdown DellEMC(conf)#interface tunnel 1 DellEMC(conf-if-tu-1)#ip unnumbered tengigabitethernet 1/1/1 DellEMC(conf-if-tu-1)#ipv6 unnumbered tengigabitethernet 1/1/1 DellEMC(conf-if-tu-1)#tunnel source 40.1.1.
tunnel source anylocal tunnel allow-remote 40.1.1.2 tunnel mode ipip decapsulate-any no shutdown Guidelines for Configuring Multipoint ReceiveOnly Tunnels • • • • • You can configure up to eight remote end-points for a multipoint receive-only tunnel. The maximum number of remote end-points supported for all multipoint receive-only tunnels on the switch depends on the hardware table size to setup termination.
55 Uplink Failure Detection (UFD) Feature Description A switch provides upstream connectivity for devices, such as servers. If a switch loses its upstream connectivity, downstream devices also lose their connectivity. However, the devices do not receive a direct indication that upstream connectivity is lost because connectivity to the switch is still operational. UFD allows a switch to associate downstream interfaces with upstream interfaces.
Figure 130. Uplink Failure Detection How Uplink Failure Detection Works UFD creates an association between upstream and downstream interfaces. The association of uplink and downlink interfaces is called an uplink-state group. An interface in an uplink-state group can be a physical interface or a port-channel (LAG) aggregation of physical interfaces. An enabled uplink-state group tracks the state of all assigned upstream interfaces.
Figure 131. Uplink Failure Detection Example If only one of the upstream interfaces in an uplink-state group goes down, a specified number of downstream ports associated with the upstream interface are put into a Link-Down state. You can configure this number and is calculated by the ratio of the upstream port bandwidth to the downstream port bandwidth in the same uplink-state group.
• If you disable an uplink-state group, the downstream interfaces are not disabled regardless of the state of the upstream interfaces. • • If an uplink-state group has no upstream interfaces assigned, you cannot disable downstream interfaces when an upstream link goes down. To enable the debug messages for events related to a specified uplink-state group or all groups, use the debug uplink-stategroup [group-id] command, where the group-id is from 1 to 16.
6. (Optional) Disable upstream-link tracking without deleting the uplink-state group. UPLINK-STATE-GROUP mode no enable The default is upstream-link tracking is automatically enabled in an uplink-state group. To re-enable upstream-link tracking, use the enable command. Clearing a UFD-Disabled Interface You can manually bring up a downstream interface in an uplink-state group that UFD disabled and is in a UFD-Disabled Error state.
Displaying Uplink Failure Detection To display information on the UFD feature, use any of the following commands. • Display status information on a specified uplink-state group or all groups. EXEC mode show uplink-state-group [group-id] [detail] • • group-id: The values are from 1 to 16. • detail: displays additional status information on the upstream and downstream interfaces in each group. Display the current status of a port or port-channel interface assigned to an uplink-state group.
Uplink State Group : 16 Status: Disabled, Up Upstream Interfaces : Te 1/4/1(Dwn) Po 8(Dwn) Downstream Interfaces : Te 1/10/1(Dwn) The following example shows viewing the interface status with UFD information.
• • Add a text description for the group. Verify the configuration with various show commands.
56 Upgrade Procedures To find the upgrade procedures, go to the Dell EMC Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell EMC Networking OS version. To upgrade your system type, follow the procedures in the Dell EMC Networking OS Release Notes. You can download the release notes of your platform at https://www.force10networks.com. Use your login ID to log in to the website.
57 Virtual LANs (VLANs) Virtual LANs (VLANs) are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The system supports up to 4093 port-based VLANs and one default VLAN, as specified in IEEE 802.1Q.
• • Untagged interfaces must be part of a VLAN. To remove an untagged interface from the Default VLAN, create another VLAN and place the interface into that VLAN. Alternatively, use the no switchport command, and Dell EMC Networking OS removes the interface from the Default VLAN. A tagged interface requires an additional step to remove it from Layer 2 mode. Because tagged interfaces can belong to multiple VLANs, remove the tagged interface from all VLANs using the no tagged interface command.
Information contained in the tag header allows the system to prioritize traffic and to forward information to ports associated with a specific VLAN ID. Tagged interfaces can belong to multiple VLANs, while untagged interfaces can belong only to one VLAN. Configuration Task List This section contains the following VLAN configuration tasks.
To tag frames leaving an interface in Layer 2 mode, assign that interface to a port-based VLAN to tag it with that VLAN ID. To tag interfaces, use the following commands. 1. Access INTERFACE VLAN mode of the VLAN to which you want to assign the interface. CONFIGURATION mode interface vlan vlan-id 2. Enable an interface to include the IEEE 802.1Q tag header.
untagged interface This command is available only in VLAN interfaces. The no untagged interface command removes the untagged interface from a port-based VLAN and places the interface in the Default VLAN. You cannot use the no untagged interface command in the Default VLAN. The following example shows the steps and commands to move an untagged interface from the Default VLAN to another VLAN. To determine interface status, use the show vlan command.
Configuring Native VLANs Traditionally, ports can be either untagged for membership to one VLAN or tagged for membership to multiple VLANs. You must connect an untagged port to a VLAN-unaware station (one that does not understand VLAN tags), and you must connect a tagged port to a VLAN-aware station (one that generates and understands VLAN tags). Native VLAN support breaks this barrier so that you can connect a port to both VLAN-aware and VLAN-unaware stations. Such ports are referred to as hybrid ports.
58 Virtual Link Trunking (VLT) Overview In a traditional switched topology as shown below, spanning tree protocols (STPs) are used to block one or more links to prevent loops in the network. Although loops are prevented, bandwidth of all links is not effectively utilized by the connected devices. Figure 133. Traditional switched topology VLT not only overcomes this caveat, but also provides a multipath to the connected devices.
To prevent the initial loop that may occur prior to VLT being established, use a spanning tree protocol. After VLT is established, you may use rapid spanning tree protocol (RSTP) to prevent loops from forming with new links that are incorrectly connected and outside the VLT domain. VLT provides Layer 2 multipathing, creating redundancy through increased bandwidth, enabling multiple parallel paths between nodes, and load-balancing traffic where alternate paths exist.
between the two VLT chassis. IGMP and VLT configurations must be identical on both sides of the trunk to ensure the same behavior on both sides. The following example shows how VLT is deployed. The switches appear as a single virtual switch from the point of view of the switch or server supporting link aggregation control protocol (LACP). VLT Terminology The following are key VLT terms. • • • • • • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches.
If Host 1 from a VLT domain sends a frame to Host 2 in another VLT domain, the frame can use any link shown to reach Host 2. MAC synchronization between VLT peers handles the traffic flow even if it is hashed and forwarded through the other member of the portchannel.
VLT on Core Switches Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode. This example provides the highest form of resiliency, scaling, and load balancing in data center switching networks.
Figure 138. Enhanced VLT Configure Virtual Link Trunking VLT requires that you enable the feature and then configure the same VLT domain, backup link, and VLT interconnect on both peer switches. Important Points to Remember • • • • • • • • • • • • • You cannot enable stacking simultaneously with VLT. If you enable both at the same time, unexpected behavior can occur. VLT port channel interfaces must be switch ports. If you include RSTP on the system, configure it before VLT.
• • • • • • • • When you enable IGMP snooping on the VLT peers, ensure the value of the delay-restore command is not less than the query interval. When you enable Layer 3 routing protocols on VLT peers, make sure the delay-restore timer is set to a value that allows sufficient time for all routes to establish adjacency and exchange all the L3 routes between the VLT peers before you enable the VLT ports.
• • One device in the VLT domain is assigned a primary role; the other device takes the secondary role. The primary and secondary roles are required for scenarios when connectivity between the chassis is lost. VLT assigns the primary chassis role according to the lowest MAC address. You can configure the primary role manually. • In a VLT domain, the peer switches must run the same Dell EMC Networking OS software version.
• • • • • • • To connect servers and access switches with VLT peer switches, you use a VLT port channel, as shown in Overview. Up to 96 port-channels are supported; up to 16 member links are supported in each port channel between the VLT domain and an access device. The discovery protocol running between VLT peers automatically generates the ID number of the port channel that connects an access device and a VLT switch.
• • To verify that a VLT peer is consistently configured for either the master or backup role in all VRRP groups, use the show vrrp command on each peer. • Configure the same L3 routing (static and dynamic) on each peer so that the L3 reachability and routing tables are identical on both VLT peers. Both the VRRP master and backup peers must be able to locally forward L3 traffic in the same way.
VLT Bandwidth Monitoring When bandwidth usage of the VLTi (ICL) exceeds 80%, a syslog error message (shown in the following message) and an SNMP trap are generated. %STKUNIT0-M:CP %VLTMGR-6-VLT-LAG-ICL: Overall Bandwidth utilization of VLT-ICL-LAG (portchannel 25) crosses threshold. Bandwidth usage (80 ) When the bandwidth usage drops below the 80% threshold, the system generates another syslog message (shown in the following message) and an SNMP trap.
PIM-Sparse Mode Support on VLT The designated router functionality of the PIM Sparse-Mode multicast protocol is supported on VLT peer switches for multicast sources and receivers that are connected to VLT ports. VLT peer switches can act as a last-hop router for IGMP receivers and as a first-hop router for multicast sources. Figure 139.
Each VLT peer runs its own PIM protocol independently of other VLT peers. To ensure the PIM protocol states or multicast routing information base (MRIB) on the VLT peers are synced, if the incoming interface (IIF) and outgoing interface (OIF) are Spanned, the multicast route table is synced between the VLT peers. To verify the PIM neighbors on the VLT VLAN and on the multicast port, use the show ip pim neighbor, show ip igmp snooping mrouter, and show running config commands.
Figure 140. Packets without peer routing enabled If you enable peer routing, a VLT node acts as a proxy gateway for its connected VLT peer as shown in the image below. Even though the gateway address of the packet is different, Peer-1 routes the packet to its destination on behalf of Peer-2 to avoid sub-optimal routing. Figure 141. Packets with peer routing enabled Benefits of Peer Routing • • • • Avoids sub-optimal routing Reduces latency by avoiding another hop in the traffic path.
VLT Unicast Routing VLT unicast routing is a type of VLT peer routing that locally routes unicast packets destined for the L3 endpoint of the VLT peer. This method avoids sub-optimal routing. Peer-routing syncs the MAC addresses of both VLT peers and requires two local DA entries in TCAM. If a VLT node is down, a timer that allows you to configure the amount of time needed for peer recovery provides resiliency. You can enable VLT unicast across multiple configurations using VLT links.
• • When using factory default settings on a new switch deployed as a VLT node, packet loss may occur due to the requirement that all ports must be open. ECMP is not compatible on VLT nodes using VLT multicast. You must use a single VLAN. Configuring VLT Multicast To enable and configure VLT multicast, follow these steps. 1. Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id 2. Enable peer-routing.
1. Configure RSTP in the core network and on each peer switch as described in Rapid Spanning Tree Protocol (RSTP). Disabling RSTP on one VLT peer may result in a VLT domain failure. 2. Enable RSTP on each peer switch. PROTOCOL SPANNING TREE RSTP mode no disable 3. Configure each peer switch with a unique bridge priority.
1. Configure the VLT interconnect for the VLT domain. The primary and secondary switch roles in the VLT domain are automatically assigned after you configure both sides of the VLTi. NOTE: If you use a third-party ToR unit, to avoid potential problems if you reboot the VLT peers, Dell EMC recommends using static LAGs on the VLTi between VLT peers. 2. Enable VLT and create a VLT domain ID. VLT automatically selects a system MAC address. 3. Configure a backup link for the VLT domain. 4.
3. Configure the port channel to be used as the VLT interconnect between VLT peers in the domain. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number 4. Enable peer routing. VLT DOMAIN CONFIGURATION mode peer-routing If you enable peer routing, a VLT node acts as the proxy gateway for its peer. 5.
CONFIGURATION mode delay-restore delay-restore-time The range is from 1 to 1200. The default is 90 seconds. Reconfiguring the Default VLT Settings (Optional) To reconfigure the default VLT settings, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2.
channel-member interface interface: specify one of the following interface types: • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. 5. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown 6. Associate the port channel to the corresponding port channel in the VLT peer for the VLT connection to an attached device.
5. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages. VLT DOMAIN CONFIGURATION mode back-up destination ip-address [interval seconds] You can optionally specify the time interval used to send hello messages. The range is from 1 to 5 seconds. 6. When you create a VLT domain on a switch, Dell EMC Networking OS automatically creates a VLT-system MAC address used for internal system operations.
17. Repeat steps 1 through 16 for the VLT peer node in Domain 1. 18. Repeat steps 1 through 16 for the first VLT node in Domain 2. 19. Repeat steps 1 through 16 for the VLT peer node in Domain 2. To verify the configuration of a VLT domain, use any of the show commands described in . VLT Sample Configuration To review a sample VLT configuration setup, study these steps. 1. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. VLT DOMAIN mode vlt domain domain id 2.
Dell-4(conf)#vlt domain 5 Dell-4(conf-vlt-domain)# Configure the VLTi between VLT peer 1 and VLT peer 2. 1. You can configure the LACP/static LAG between the peer units (not shown). 2. Configure the peer-link port-channel in the VLT domains of each peer unit.
In the ToR unit, configure LACP on the physical ports.
PVST+ Configuration PVST+ is supported in a VLT domain. Before you configure VLT on peer switches, configure PVST+ in the network. PVST+ is required for initial loop prevention during the VLT startup phase. You may also use PVST+ for loop prevention in the network outside of the VLT port channel. Run PVST+ on both VLT peer switches. A PVST+ instance is created for every VLAN configured in the system. PVST+ instances running in the Primary Peer control the VLT-LAGs on both Primary and Secondary peers.
• • • • • • • Access switch A1 is connected to two VLT peers (Dell-1 and Dell-2). The two VLT peers are connected to an upstream switch R1. OSPF is configured in Dell-1, Dell-2, and R1 switches. Dell-1 is configured as the root bridge. Dell-1 is configured as the VLT primary. As the Router ID of Dell-1 is the highest in the topology (highest loopback address of 172.17.1.1), Dell-1 is the OSPF Designated Router. As the Router ID of Dell-2 is the second highest in the topology (172.16.1.
The following is the configuration in interfaces: DellEMC#1#sh run int ma0/0 interface ManagementEthernet 0/0 description Used_for_VLT_Keepalive ip address 10.10.10.1/24 no shutdown (The management interfaces are part of a default VRF and are isolated from the switch’s data plane.) In Dell-1, te 0/0 and te 0/1 are used for VLTi.
description port-channel_to_access_switch_A1 no ip address portmode hybrid switchport vlt-peer-lag port-channel 2 no shutdown Vlan 20 is used in Dell-1, Dell-2, and R1 to form OSPF adjacency. When OSPF is converged, the routing tables in all devices are synchronized. DellEMC#1#sh run int vlan 20 interface Vlan 20 description OSPF PEERING VLAN ip address 192.168.20.1/29 untagged Port-channel 1 no shutdown ! DellEMC#1#sh run int vlan 800 interface Vlan 800 description Client-VLAN ip address 192.168.8.
HeartBeat Messages Sent: HeartBeat Messages Received: 4 5 Use the show vlt detail command to verify that VLT is functional and that the correct VLANs are allowed. DellEMC#1#sh vlt detail Local LAG Id -----------1 2 Peer LAG Id ----------1 2 Local Status -----------UP UP Peer Status ----------UP UP Active VLANs ------------20 1, 800, 900 The following output displays the OSPF configuration in Dell-1 DellEMC#1#sh run | find router router ospf 1 router-id 172.17.1.1 network 192.168.9.
800 0 0 0 ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff 90:b1:1c:f4:2c:bd 90:b1:1c:f4:29:f3 STATIC STATIC LOCAL_DA LOCAL_DA 00001 00001 00001 00001A The above output shows that the 90:b1:1c:f4:2c:bd MAC address belongs to Dell-1. The 90:b1:1c:f4:29:f3 MAC address belongs to Dell-2. Also note that these MAC addresses are marked with LOCAL_DA. This means, these are the local destination MAC addresses used by hosts when routing is required.
Te 0/4 connects to the access switch A1. Dell-2#sh run int te0/4 interface TenGigabitEthernet 0/4 description To_Access_Switch_A1_fa0/13 no ip address port-channel-protocol LACP port-channel 2 mode active no shutdown Te 0/6 connects to the uplink switch R1. Dell-2#sh run int te0/6 interface TenGigabitEthernet 0/6 description To_CR1_fa0/13 no ip address port-channel-protocol LACP port-channel 1 mode active no shutdown Port channel 1 connects the uplink switch R1.
unit-id 0 peer routing Verify if VLT on Dell-1 is functional Dell-2#sh vlt brief VLT Domain Brief -----------------Domain ID: Role: Role Priority: 1 Secondary 55000 ICL Link Status: HeartBeat Status: VLT Peer Status: Local Unit Id: Version: Local System MAC address: Remote System MAC address: Configured System MAC address: Remote system version: Delay-Restore timer: Peer routing : Peer routing-Timeout timer: Multicast peer routing timeout: Up Up Up 1 6(3) 90:b1:1c:f4:29:f1 90:b1:1c:f4:2c:bb 90:b1:1c:f4:0
The following output displays the routes learned using OSPF. Dell-2 also learns the routes to the loopback addresses on R1 through OSPF. Dell-2#show ip route ospf Destination Gateway ----------------O 2.2.2.2/24 via 192.168.20.3, O 3.3.3.2/24 via 192.168.20.3, O 4.4.4.2/24 via 192.168.20.3, O 172.15.1.1/32 via 192.168.20.3, O 172.16.1.2/32 via 192.168.20.
network 172.15.1.0 0.0.0.255 area 0 network 192.168.20.0 0.0.0.7 area 0 CR1#show ip ospf neighbor (R1 is a DROTHER) Neighbor ID Pri State Dead Time Address Interface 172.16.1.2 1 FULL/BDR 00:00:31 192.168.20.2 Port-channel1 172.17.1.1 1 FULL/DR 00:00:38 192.168.20.1 Port-channel1 CR1#show ip route (Output Truncated) 2.0.0.0/24 is subnetted, 1 subnets C 2.2.2.0 is directly connected, Loopback2 3.0.0.0/24 is subnetted, 1 subnets C 3.3.3.0 is directly connected, Loopback3 O 192.168.8.0/24 [110/2] via 192.168.
Figure 143. eVLT Configuration Example eVLT Configuration Step Examples In Domain 1, configure the VLT domain and VLTi on Peer 1. Domain_1_Peer1#configure Domain_1_Peer1(conf)#interface port-channel 1 Domain_1_Peer1(conf-if-po-1)# channel-member TenGigabitEthernet 1/8/1-1/8/2 Domain_1_Peer1(conf)#vlt domain 1000 Domain_1_Peer1(conf-vlt-domain)# peer-link port-channel 1 Domain_1_Peer1(conf-vlt-domain)# back-up destination 10.16.130.
Configure eVLT on Peer 2. Domain_1_Peer2(conf)#interface port-channel 100 Domain_1_Peer2(conf-if-po-100)# switchport Domain_1_Peer2(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer2(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 2.
PIM-Sparse Mode Configuration Example The following sample configuration shows how to configure the PIM Sparse mode designated router functionality on the VLT domain with two VLT port-channels that are members of VLAN 4001. For more information, refer to PIM-Sparse Mode Support on VLT. Examples of Configuring PIM-Sparse Mode The following example shows how to enable PIM multicast routing on the VLT node globally.
• Display the current configuration of all VLT domains or a specified group on the switch. • EXEC mode show running-config vlt Display statistics on VLT operation. • • EXEC mode show vlt statistics Display the RSTP configuration on a VLT peer switch, including the status of port channels used in the VLT interconnect trunk and to connect to access devices. EXEC mode show spanning-tree rstp Display the current status of a port or port-channel interface used in the VLT domain.
Multicast peer-routing timeout DellEMC# : 150 seconds The following example shows the show vlt detail command.
HeartBeat Messages Received: 978 ICL Hello's Sent: 89 ICL Hello's Received: 89 The following example shows the show spanning-tree rstp command. The bold section displays the RSTP state of port channels in the VLT domain. Port channel 100 is used in the VLT interconnect trunk (VLTi) to connect to VLT peer2. Port channels 110, 111, and 120 are used to connect to access switches or servers (vlt).
Dell_VLTpeer1(conf-if-ma-1/1)#no shutdown Dell_VLTpeer1(conf-if-ma-1/1)#exit Configure the VLT interconnect (VLTi). Dell_VLTpeer1(conf)#interface port-channel 100 Dell_VLTpeer1(conf-if-po-100)#no ip address Dell_VLTpeer1(conf-if-po-100)#channel-member fortyGigE 1/5,1/6 Dell_VLTpeer1(conf-if-po-100)#no shutdown Dell_VLTpeer1(conf-if-po-100)#exit Configure the port channel to an attached device.
Verify that the port channels used in the VLT domain are assigned to the same VLAN.
Description Behavior at Peer Up Behavior During Run Time Action to Take System MAC mismatch A syslog error message and an SNMP trap are generated. A syslog error message and an SNMP trap are generated. Verify that the unit ID of VLT peers is not the same on both units and that the MAC address is the same on both units. Unit ID mismatch The VLT peer does not boot up. The VLTi is forced to a down state. The VLT peer does not boot up. The VLTi is forced to a down state.
When a VLTi port in trunk mode is a member of symmetric VLT PVLANs, the PVLAN packets are forwarded only if the PVLAN settings of both the VLT nodes are identical. You can configure the VLTi in trunk mode to be a member of non-VLT PVLANs if the VLTi is configured on both the peers. MAC address synchronization is performed for VLT PVLANs across peers in a VLT domain. Keep the following points in mind when you configure VLT nodes in a PVLAN: • • • Configure the VLTi link to be in trunk mode.
PVLAN Operations When a VLT Peer is Restarted When the VLT peer node is rebooted, the VLAN membership of the VLTi link is preserved and when the peer node comes back online, a verification is performed with the newly received PVLAN configuration from the peer. If any differences are identified, the VLTi link is either added or removed from the VLAN. When the peer node restarts and returns online, all the PVLAN configurations are exchanged across the peers.
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Access Access Secondary (Community) Secondary (Isolated) No No • • Yes Yes Promiscuous Promiscuous Primary X Primary X Primary Primary Yes Yes - Secondary (Community) - Secondary (Community) Yes Yes - Secondary (Isolated) - Secondary (Isolated) Yes Yes Promiscuous Trunk Primary Normal No No Promiscuous Trunk Primary Primary Yes No Access Access Secondary (Communi
2. Remove an IP address from the interface. INTERFACE PORT-CHANNEL mode no ip address 3. Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. 4. Ensure that the port channel is active.
private-vlan mode primary 8. Map secondary VLANs to the selected primary VLAN. INTERFACE VLAN mode private-vlan mapping secondary-vlan vlan-list The list of secondary VLANs can be: • • • Specified in comma-delimited (VLAN-ID,VLAN-ID) or hyphenated-range format (VLAN-ID-VLAN-ID). Specified with this command even before they have been created. Amended by specifying the new secondary VLAN to be added to the list.
Proxy ARP is enabled only if you enable peer routing on both the VLT peers. If you disable peer routing by using the no peerroutingcommand in VLT DOMAIN node, a notification is sent to the VLT peer to disable the proxy ARP. If you disable peer routing when ICL link is down, a notification is not sent to the VLT peer and in such a case, the VLT peer does not disable the proxy ARP operation. When you remove the VLT domain on one of the VLT nodes, the peer routing configuration removal is notified to the peer.
show running-config Sample configuration of VLAN-stack over VLT (Peer 1) Configure the VLT domain DellEMC(conf)#vlt domain 1 DellEMC(conf-vlt-domain)#peer-link port-channel 1 DellEMC(conf-vlt-domain)#back-up destination 10.16.151.116 DellEMC(conf-vlt-domain)#primary-priority 100 DellEMC(conf-vlt-domain)#system-mac mac-address 00:00:00:11:11:11 DellEMC(conf-vlt-domain)#unit-id 0 DellEMC(conf-vlt-domain)# DellEMC#show running-config vlt ! vlt domain 1 peer-link port-channel 1 back-up destination 10.16.151.
shutdown DellEMC# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN DellEMC#show vlan id 50 Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P - Primary, C Community, I - Isolated O - Openflow Q: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged o - OpenFlow untagged, O - OpenFlow tagged G - GVRP tagged, M - Vlan-stack i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged NUM 50 Status Active Description De
no shutdown DellEMC# Configure the VLAN as a VLAN-Stack VLAN and add the VLT LAG as members to the VLAN DellEMC(conf)#interface vlan 50 DellEMC(conf-if-vl-50)#vlan-stack compatible DellEMC(conf-if-vl-50-stack)#member port-channel 10 DellEMC(conf-if-vl-50-stack)#member port-channel 20 DellEMC(conf-if-vl-50-stack)# DellEMC#show running-config interface vlan 50 ! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown DellEMC# Verify that the Port Channels used in the VLT Domain are Assigned
level hashing in the ToR switch, it is routed instead of forwarding the packet to node1. This processing occurs because of the match or hit for the entry in the TCAM of the VLT node2. Synchronization of IPv6 ND Entries in a VLT Domain Because the VLT nodes appear as a single unit, the ND entries learned via the VLT interface are expected to be the same on both VLT nodes. VLT V6 VLAN and neighbor discovery protocol monitor (NDPM) entries synchronization between VLT nodes is performed.
Figure 144. Sample Configuration of IPv6 Peer Routing in a VLT Domain Sample Configuration of IPv6 Peer Routing in a VLT Domain Consider a sample scenario as shown in the following figure in which two VLT nodes, Unit1 and Unit2, are connected in a VLT domain using an ICL or VLTi link. To the south of the VLT domain, Unit1 and Unit2 are connected to a ToR switch named Node B. Also, Unit1 is connected to another node, Node A, and Unit2 is linked to a node, Node C.
Neighbor Solicitation from VLT Hosts Consider a case in which NS for VLT node1 IP reaches VLT node1 on the VLT interface and NS for VLT node1 IP reaches VLT node2 due to LAG level hashing in the ToR. When VLT node1 receives NS from VLT VLAN interface, it unicasts the NA packet on the VLT interface. When NS reaches VLT node2, it is flooded on all interfaces including ICL. When VLT node 1 receives NS on ICL, it floods the NA packet on the VLAN.
When VLT node receives traffic from non-VLT host intended to VLT host, it routes the traffic to VLT interface. If VLT interface is not operationally up VLT node will route the traffic over ICL. Non-VLT host to North Bound traffic flow When VLT node receives traffic from non-VLT host intended to north bound with DMAC as self MAC it routes traffic to next hop.
ToR 1. Enable BFD globally. TOR(conf)# bfd enable 2. Configure a VLT peer LAG. TOR(conf)#interface tengigabitethernet 1/1/1 TOR(conf-if-te-1/1/1)#no ip address TOR(conf-if-te-1/1/1)#port-channel-protocol lacp TOR(conf-if-te-1/1/1)#port-channel 10 mode active TOR(conf-if-te-1/1/1)#no shutdown TOR(conf)#interface tengigabitethernet 1/1/2 TOR(conf-if-te-1/1/2)#no ip address TOR(conf-if-te-1/1/2)#port-channel-protocol lacp TOR(conf-if-te-1/1/2)#port-channel 10 mode active TOR(conf-if-te-1/1/2)#no shutdown 3.
VLT Primary 1. Enable BFD globally. VLT_Primary(conf)# bfd enable 2. Configure port channel which is used as VLTi link. VLT_Primary(conf)# interface VLT_Primary(conf-if-po-100)# VLT_Primary(conf-if-po-100)# VLT_Primary(conf-if-po-100)# port-channel 100 no ip address channel-member tengigabitethernet 1/1/1, 1/1/2 no shutdown 3. Enable VLT and configure a VLT domain.
4. Configure a VLT peer LAG. VLT_Primary(conf)#interface tengigabitethernet 1/1/3 VLT_Primary(conf-if-te-1/1/3)#no ip address VLT_Primary(conf-if-te-1/1/3)#port-channel-protocol lacp VLT_Primary(conf-if-te-1/1/3)#port-channel 10 mode active VLT_Primary(conf-if-te-1/1/3)#no shutdown VLT_Primary(conf)#interface port-channel 10 VLT_Primary(conf-if-po-10)#no ip address VLT_Primary(conf-if-po-10)#switchport VLT_Primary(conf-if-po-10)#vlt-peer-lag port-channel 10 VLT_Primary(conf-if-po-10)#no shutdown 5.
Remote System MAC address: Remote system version: Delay-Restore timer: Delay-Restore Abort Threshold: Peer-Routing : Peer-Routing-Timeout timer: Multicast peer-routing timeout: f4:8e:38:6a:97:3f 6(9) 90 seconds 60 seconds Enabled 0 seconds 150 seconds VXLAN on VLT VLT peers are two nodes in the network that are loosely coupled. It provides high availability to the other ends.
Static VXLAN Configuration in a VLT setup Configuration steps are covered below: 1. Both Gateway VTEPs need VLT configured. • ICL port configuration interface Port-channel 1 no ip address channel-member TenGigabitEthernet 0/4-5 no shutdown • VLT Domain Configuration vlt domain 100 peer-link port-channel 1 back-up destination 10.11.70.14 • this is ip address of the peer node VXLAN Instance Configuration vxlan-instance 1 static local-vtep-ip 14.14.14.
59 VLT Proxy Gateway The virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a Layer 3 (L3) end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, see the Command Line Reference Guide.
Figure 146. Sample Configuration for a VLT Proxy Gateway Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable a VLT proxy gateway: • • • • • • • • • • • • • Proxy gateway is supported only for VLT; for example, across a VLT domain. You must enable the VLT peer-routing command for the VLT proxy gateway to function.
• • • • When a Virtual Machine (VM) moves from one VLT domain to the another VLT domain, the VM host sends the gratuitous ARP (GARP) , which in-turn triggers a mac movement from the previous VLT domain to the newer VLT domain. After a station move, if the host sends a TTL1 packet destined to its gateway; for example, a previous VLT node, the packet can be dropped.
• LLDP packets fail to reach the remote VLT domain devices (for example, because the system is down, rebooting, or the port’s physical link connection is down). LLDP VLT Proxy Gateway in a Square VLT Topology Figure 147. Sample Configuration for a VLT Proxy Gateway • The preceding figure shows a sample square VLT Proxy gateway topology. There are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This causes sub-optimal routing.
• You can disable the VLT Proxy Gateway for a particular VLAN using an "Exclude-VLAN" configuration. The configuration has to be done in both the VLT domains [C and D in VLT domain 1 and C1 and D1 in VLT domain 2].
Figure 148. VLT Proxy Gateway Sample Topology VLT Domain Configuration Dell-1 and Dell-2 constitute VLT domain 120. Dell-3 and Dell-4 constitute VLT domain 110. These two VLT domains are connected using a VLT LAG P0 50. To know how to configure the interfaces in VLT domains, see the Configuring VLT section. Dell-1 VLT Configuration vlt domain 120 peer-link port-channel 120 back-up destination 10.1.1.
Note that on the inter-domain link, the switchport command is enabled. On a VLTi link between VLT peers in a VLT domain, the switchport command is not used. VLAN 100 is used as the OSPF peering VLAN between Dell-1 and Dell-2. interface Vlan 100 description OSPF Peering VLAN to Dell-2 ip address 10.10.100.1/30 ip ospf network point-to-point no shutdown VLAN 101 is used as the OSPF peering VLAN between the two VLT domains. interface Vlan 101 description ospf peering vlan across VLTPG_Po50 ip address 10.10.
Neighbor ID Pri State Dead Time Address Interface Area 4.4.4.4 1 FULL/ - 00:00:33 10.10.100.1 Vl 100 0 Dell-3 VLT Configuration vlt domain 110 peer-link port-channel 110 back-up destination 10.1.1.1 primary-priority 4096 system-mac mac-address 02:01:e8:d8:93:02 unit-id 0 peer-routing ! proxy-gateway static remote-mac-address 00:01:e8:d8:93:07 remote-mac-address 00:01:e8:d8:93:e5 These MAC addresses are the system L2 interface addresses for each switch at the remote site, Dell-1 and Dell-2.
Dell-4 VLT Configuration vlt domain 110 peer-link port-channel 110 back-up destination 10.1.1.0 primary-priority 24576 system-mac mac-address 02:01:e8:d8:93:02 unit-id 1 peer-routing ! proxy-gateway static remote-mac-address 00:01:e8:d8:93:07 remote-mac-address 00:01:e8:d8:93:e5 These MAC addresses are the system L2 interface addresses for each switch at the remote site, Dell-1 and Dell-2. interface Vlan 102 description ospf peering vlan to DELL-3 ip address 10.10.102.
60 Virtual Extensible LAN (VXLAN) Virtual Extensible LAN (VXLAN) is supported on Dell EMC Networking OS. Overview The switch acts as the VXLAN gateway and performs the VXLAN Tunnel End Point (VTEP) functionality. VXLAN is a technology where in the data traffic from the virtualized servers is transparently transported over an existing legacy network. Figure 149. VXLAN Gateway NOTE: In a stack setup, the Dell EMC Networking OS does not support VXLAN.
• NSX Controller-based VXLAN for VLT Components of VXLAN network VXLAN provides a mechanism to extend an L2 network over an L3 network. In short, VXLAN is an L2 overlay scheme over an L3 network and this overlay is termed as a VXLAN segment.
• • • • VTEP is responsible for identifying and binding a Port and VLAN to a logical network VTEP maintains MAC bindings to a VTEP. VXLAN communicates with the VTEP using a standard protocol called OvsDb Protocol. The protocol uses the JSON RPC-based message format. The VTEP acts according to the TOR schema defined by VMWare. The solution is very specific to VMWare-based orchestration platforms and does not work with other orchestration platforms.
VXLAN Header : • • • Frame Check Sequence (FCS): Note that the original Ethernet frame's FCS is not included, but new FCS is generated on the outer Ethernet frame. VXLAN Flags : Reserved bits set to zero except bit 3, the first bit, which is set to 1 for a valid VNI VNI: The 24-bit field that is the VXLAN Network Identifier Reserved: A set of fields, 24 bits and 8 bits, that are reserved and set to zero .
MRgwFgYDVQQLDA9EZWxsIE5ldHdvcmtpbmcxETAPBgNVBAcMCFNBTiBKb3NlMRMwEQYDVQQIDApDYWxpZm9ybmlhMSI wIAYJKoZIhvcNAQkBFhNzb21lb25lQGV4YW1wbGUuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAqG aGq3Cv4/RpuoiuePrnayORRhzEW/H2Ypv8OKEcew1gySmFz24LQttzSHo4AO +qF3LkILvFW2RaHZ1mxbmm95d3PnZ8fXg2wgPz++T6coHGYH0o0+LkHVBb3IIXd/CSp +TBRzAwWMPS7tnaRv1UqiJtm6/RjcJghbf6zcQWUcg2CTtKe5ej/ rS2tIU9EBGCzL3xs6DRB3lvScgmuckc5L18qWqNHRWMdKFgKwHKUOOvHakPFs9RNJNy5Sxwfe/kgkVmqA/ KWiRIecLIgmgYjKu2E0uC3URpuydoN7UwPSeigXWeR3JyhzfFVEr5LtyXVpo9zS
Figure 152. Hardware Devices 3. Add a service node or replicator. Under Home > Networking and Security > Service Definition > Hardware Devices > Replication Cluster, click the Edit button. Select required hosts for replication and click OK. Figure 153. Add Service Node or Replicator NOTE: Ensure L3 reachability between the VTEP and the replicator. 4. Create Logical Switch. You can create a logical network by creating a logical switch.
Figure 154. Create Logical Switch 5. Create Logical Switch Port. A logical switch port provides a logical connection point for a VM interface (VIF) and a L2 gateway connection to an external network. It binds the virtual access ports in the gateway to logical network (VXLAN) and VLAN. In the Manage Hardware Bindings window, expand a VTEP and click Add. The Manage Hardware Bindings Window opens. Click the Select link and the Specify Hardware Port window opens. Click the hardware port and click OK.
Figure 156. Create Logical Switch Port 6. (Optional) Enable or disable BFD globally. Go to Hardware Devices tab > BFD Configuration, and click the Edit button. The Edit BFD Configuration windows opens. Check or uncheck the Enable BFD check box. You can also change the probe interval if required. Figure 157. Edit VXLAN BFD Configuration NOTE: For more details about NSX controller configuration, refer to the NSX user guide from VMWare .
Configuring and Controling VXLAN from Nuage Controller GUI The Dell EMC Networking OS supports Nuage controller for VXLAN. You can configure and control VXLAN from the Nuage controller GUI, by adding a hardware device to the Nuage controller and authenticating the device. 1. Under the Infrastructure tab, add a datacenter gateway. Figure 158. Add Data center Gateway 2. Create port-to-VLAN mappings. Figure 159. Port-to-VLAN mappings 3. Under the Networks tab, create an L2 domain.
Configuring VxLAN Gateway To configure the VxLAN gateway on the switch, follow these steps: 1. Connecting to NVP controller 2. Advertising VXLAN access ports to controller Connecting to an NVP Controller To connect to an NVP controller, use the following commands. 1. Enable the VXLAN feature. CONFIGURATION mode feature vxlan You must configure feature VXLAN to configure vxlan-instance. 2. Create a VXLAN instance that connects to the controller.
Displaying VXLAN Configurations To display the VXLAN configurations, use the following commands. The following example shows the show vxlan vxlan-instance command. DellEMC#show vxlan vxlan-instance 1 Instance : 1 Mode : Controller Admin State : enabled Controller Type : Nsx Management IP : 10.16.140.34 Gateway IP : 4.3.3.3 MAX Backoff : 8000 Controller : 10.16.140.181:6640 ssl Controller Cluster : : 10.16.140.181:6640 ssl (connected) : 10.16.140.182:6640 ssl (connected) : 10.16.140.
The following example shows the show vxlan vxlan-instance unicast-mac-remote command. DellEMC# show vxlan vxlan-instance <1> unicast-mac-remote Total Local Mac Count: 1 VNI MAC TUNNEL 4656 00:00:01:00:00:01 36.1.1.1 The following example shows the show vxlan vxlan-instance unicast-mac-remote command when the tunnel is down. DellEMC# show vxlan vxlan-instance <1> unicast-mac-remote Total Local Mac Count: 1 VNI MAC TUNNEL 4656 00:00:01:00:00:01 36.1.1.
1. Enable VXLAN configuration globally on the platform. CONFIGURATION mode feature vxlan 2. Enable static VXLAN instance. CONFIGURATION mode INTERFACE mode vxlan-instance instance ID [static] You can configure vxlan-instance on INTERFACE mode to enable VXLAN on specific ports. 3. Set the local IP Address that can be used as a source for VXLAN tunnels. VXLAN-INSTANCE mode local-vtep-ip IP Address 4. Create a VNI profile to associate with remote VTEP configuration.
The following example displays VXLAN statistics for a specific port and VLAN combination. DellEMC# show vxlan statistics interface te 0/0 vlan 2 Statistics for Port : Te 0/0 Vlan : 2 Rx Packets : 0 Rx Bytes : 0 Tx Packets : 0 Tx Bytes : 0 The following example displays VXLAN statistics for the specified VXLAN tunnel. DellEMC# show vxlan vxlan-instance 1 statistics remote-vtep-ip 1.1.1.1 Statistics for Remote-vtep-ip : 1.1.1.
VXLAN Scenario VXLAN tunnel stays down even if the remote VTEP IP is reachable through a recursive route. Following section explains the scenario through an example configuration. The following illustration depicts the topology in which the VTEPs are connected. Figure 161. VXLAN Scenario In the above illustration, R1 and R2 are the VTEPs that are trying to form the VXLAN tunnel. R3, the route reflector, exchanges the routes across two IBGP peers (R1 and R2).
In this RIOT scheme, whenever R1 tries to reach R2, the packet gets to P1 on VTEP 1 with VLAN 10 and gets routed out of P2 on VLAN 20. VTEP 1 sends an ARP request for R2 (10.1.2.1) through P2. This request gets VXLAN encapsulated at P3 and is sent out of P4. Eventually, the native ARP request reaches R2. R2 sends an ARP response that is VXLAN encapsulated at VTEP 2. This response reaches VTEP 1 on P4 with a VXLAN encapsulation. At this point, the ARP response is de-capsulated at P4.
• • • • • • • When you ping for 10.1.2.1 (Vlan 20’s IP on R2) from R1, the packet would get to P1 on VTEP 1 with Vlan 10, and try to get routed out of P2 on Vlan 20. VTEP 1 sends an ARP request for 10.1.2.1 out of P2. This gets VXLAN encapsulated at P2, and gets sent out of P3. VXLAN encapsulated ARP request lands on VTEP 2 which is decapsulated and sent out of P5 and P6. Packets looped back to P5 will not be forwarded again to either to P4 or P6 because of the added ACL rule 4.4.3.
In order for this configuration to work, the physical loopback ports are required to be in port-channels. There are two types of physical loopback interfaces: VXLAN Loopback Port and Non-VXLAN Loopback Port. These two port-channels are implicitly made no spanning tree, so that they do not go into a blocked state if xSTP is enabled. Internal Loopback To configure internal loopback port-channels, add free ports in the device as members of a port-channel, say 10, then configure vxlaninstance 1 loopback.
For VLT, in addition to the masks specified earlier, the VLT specific mask, to disallow frames that ingress on an ICL from going out of a VLT port channel would be permanently in place. These masks won’t be removed for the loopback ports even if the VLT peer LAG goes down (this is a deviation from standard VLT behavior, when these loopbacks are provisioned as VLT port-channels.). NSX Controller-based VXLAN for VLT Apart from static VXLAN for VLT, you can also use an NSX controller for VXLAN in a VLT setup.
• • before configuring controller-based VXLAN with VLT, remove any existing standalone VXLAN configuration. BFD tunnels come up only after the NSX controller sends tunnel details. The details come after the remote MAC addresses are downloaded from NSX controller. Configure NSX Controller-based VxLAN in VLT Setup You can configure NSX controller-based VxLAN in a VLT setup. To configure NSX controller-based VxLAN in a VLT setup, perform the following tasks: 1. (Optional) Configure BFD and UFD.
gateway-ip gateway-IP-address 5. Enter the IP address of the peer OVSDB server. peer-ovsdbserver-ip ovsdb-IP-address The peer OVSDB server is the peer VLT device. 6. Enter the fail mode. VxLAN INSTANCE mode fail-mode secure 7. Enable the VxLAN instance. VxLAN INSTANCE mode no shutdown NOTE: Dell EMC Networking recommends the non-secure fail mode if you are configuring VxLAN for a VLT setup and use a physical L3 link for peer OVSDB connectivity.
unit-id 0 peer-routing Configuration on an interface that is not part of VLT (orphan port): DellEMC#show run interface te 1/21 ! interface TenGigabitEthernet 1/21 1122 Virtual Extensible LAN (VXLAN) vxlan-instance 1 no ip address switchport no shutdown DellEMC# Configuration on VLT port channel: DellEMC#show run int po 10 ! interface Port-channel 10 vxlan-instance 1 no ip address switchport vlt-peer-lag port-channel 10 no shutdown The following are some of the show command outputs on the VLT primary: DellEM
* - No VLAN mapping exists and yet to be installed Name VNID a35fe7f7-fe82-37b4-b69a-0af4244d1fca 5000 DellEMC#$nstance 1 logical-network name a35fe7f7-fe82-37b4-b69a-0af4244d1fca Name : a35fe7f7-fe82-37b4-b69a-0af4244d1fca Description : Type : ELAN Tunnel Key : 5000 VFI : 28674 Unknown Multicast MAC Tunnels: 6.6.6.
DellEMC#show cam mac stack-unit 1 port-set 0 VlanId Mac Address Region Interface 500 ff:ff:ff:ff:ff:ff STATIC 00001 28674 00:00:00:cc:00:00 DYNAMIC 0x80000004(vxlan) 28674 00:00:bb:00:00:00 DYNAMIC 0x80000006(vxlan) 0 ff:ff:ff:ff:ff:ff STATIC 00001 1 00:01:e8:8b:7a:6e DYNAMIC Po 11 20 00:00:00:cc:00:00 STATIC Te 1/21 500 f4:8e:38:2b:3e:87 STATIC Po 1 0 00:10:18:ff:ff:ff STATIC Invalid 500 34:17:eb:37:11:02 DYNAMIC Te 1/51/1 0 14:18:77:0a:53:82 LOCAL_DA 00001 0 14:18:77:0a:53:82 LOCAL_DA 00001 0 f4:8e:38:2b:
Tunnel Key : 5000 VFI : 28674 Unknown Multicast MAC Tunnels: 6.6.6.2 : vxlan_over_ipv4 (up)(Active) Port Vlan Bindings: Te 1/21: VLAN: 20 (0x80000004), Po 1: VLAN: 20 (0x80000001), Po 10: VLAN: 20 (0x80000002), Po 20: VLAN: 20 (0x80000005), DellEMC# DellEMC# DellEMC# DellEMC# DellEMC# DellEMC#show vxlan vxlan-instance 1 multicast-mac * - Active Replicator LN-Name VNID a35fe7f7-fe82-37b4-b69a-0af4244d1fca 5000 MAC unknown dst TUNNEL-LIST 6.6.6.
• show file flash://vtep-cert.
Figure 164. Hardware Devices 3. Add a service node or replicator. Under Home > Networking and Security > Service Definition > Hardware Devices > Replication Cluster, click the Edit button. Select required hosts for replication and click OK. Figure 165. Add Service Node or Replicator NOTE: Ensure L3 reachability between the VTEP and the replicator. 4. Create Logical Switch. You can create a logical network by creating a logical switch.
Figure 166. Create Logical Switch 5. Create Logical Switch Port. A logical switch port provides a logical connection point for a VM interface (VIF) and a L2 gateway connection to an external network. It binds the virtual access ports in the gateway to logical network (VXLAN) and VLAN. In the Manage Hardware Bindings window, expand a VTEP and click Add. The Manage Hardware Bindings Window opens. Click the Select link and the Specify Hardware Port window opens. Click the hardware port and click OK.
Figure 168. Create Logical Switch Port 6. (Optional) Enable or disable BFD globally. Go to Hardware Devices tab > BFD Configuration, and click the Edit button. The Edit BFD Configuration windows opens. Check or uncheck the Enable BFD check box. You can also change the probe interval if required. Figure 169. Edit VXLAN BFD Configuration NOTE: For more details about NSX controller configuration, refer to the NSX user guide from VMWare .
61 Virtual Routing and Forwarding (VRF) VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices. Using VRF also increases network security and can eliminate the need for encryption and authentication due to traffic segmentation. Internet service providers (ISPs) often take advantage of VRF to create separate virtual private networks (VPNs) for customers; VRF is also referred to as VPN routing and forwarding.
VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF PBR, L3 QoS on VLANs Yes No NOTE: QoS not supported on VLANs. IPv4 ARP Yes Yes sFlow Yes No VRRP on physical and logical interfaces Yes Yes VRRPV3 Yes Yes Secondary IP Addresses Yes Yes Basic Yes Yes OSPFv3 Yes Yes IS-IS Yes Yes BGP Yes Yes ACL Yes No Multicast No No NDP Yes Yes RAD Yes Yes DHCP DHCP requests are not forwarded across VRF instances.
The VRF ID range is from 1 to 511. 0 is the default VRF ID. Assigning an Interface to a VRF You must enter the ip vrf forwarding command before you configure the IP address or any other setting on an interface. NOTE: You can configure an IP address or subnet on a physical or VLAN interface that overlaps the same IP address or subnet configured on another interface only if the interfaces are assigned to different VRFs.
CONFIGURATION router ospf process-id vrf vrf name The process-id range is from 0-65535. Configuring VRRP on a VRF Instance You can configure the VRRP feature on interfaces that belong to a VRF instance. In a virtualized network that consists of multiple VRFs, various overlay networks can exist on a shared physical infrastructure. Nodes (hosts and servers) that are part of the VRFs can be configured with IP static routes for reaching specific destinations through a given gateway in a VRF.
VRF MODE interface management When Management VRF is configured, the following interface range or interface group commands are disabled: • • • • • • • • • • • • • • • • ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 ipv6 nd dad — Duplicated Address Detection nd dns-server — Configure DNS distribution option in RA packets originated by the router nd hop-limit — Set hop limit advertised in RA and used in IPv6 data packets originated by the router nd managed-config-flag — Hosts sh
Figure 171.
Figure 172. Setup VRF Interfaces The following example relates to the configuration shown in the above illustrations. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet no ip address switchport no shutdown ! interface TenGigabitEthernet ip vrf forwarding blue ip address 10.0.0.1/24 no shutdown ! interface TenGigabitEthernet ip vrf forwarding orange ip address 20.0.0.1/24 no shutdown ! interface TenGigabitEthernet ip vrf forwarding green ip address 30.0.0.
ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.1 network 1.0.0.0/24 area 0 network 10.0.0.0/24 area 0 ! router ospf 2 vrf orange router-id 2.0.0.1 network 2.0.0.0/24 area 0 network 20.0.0.
! router ospf 1 vrf blue router-id 1.0.0.2 network 11.0.0.0/24 area 0 network 1.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/1/1 ! router ospf 2 vrf orange router-id 2.0.0.2 network 21.0.0.0/24 area 0 network 2.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/2/1 ! ip route vrf green30.0.0.0/24 3.0.0.1 ! The following shows the output of the show commands on Router 1.
C C O ----------2.0.0.0/24 20.0.0.0/24 21.0.0.0/24 ------Direct, Vl 192 Direct, Te 1/2/1 via 2.0.0.
B - BGP, IN - internal BGP, EX - external BGP,LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set C O C Destination ----------2.0.0.0/24 20.0.0.0/24 21.0.0.0/24 Gateway ------Direct, Vl 192 via 2.0.0.
You can also leak global routes to be made available to VRFs. As the global RTM usually contains a large pool of routes, when the destination VRF imports global routes, these routes will be duplicated into the VRF's RTM. As a result, it is mandatory to use route-maps to filter out leaked routes while sharing global routes with VRFs. Configuring Route Leaking without Filtering Criteria You can use the ip route-export tag command to export all the IPv4 routes corresponding to a source VRF.
A non-default VRF named VRF-blue is created and the interface 1/12/1 is assigned to it. 7. Configure the import target in VRF-blue. ip route-import 1:1 8. Configure the export target in VRF-blue. ip route-import 3:3 9. Configure VRF-green. ip vrf vrf-green interface-type slot/port[/subport] ip vrf forwarding VRF-green ip address ip—address mask A non-default VRF named VRF-green is created and the interface is assigned to it. 10.
O C 44.4.4.4/32 144.4.4.0/24 via VRF-shared:144.4.4.4 0/0 Direct, VRF-shared:Te 1/4/1 0/0 DellEMC# show ip route vrf VRF-Blue O 22.2.2.2/32 via 122.2.2.2 00:00:11 C O C 122.2.2.0/24 44.4.4.4/32 144.4.4.0/24 00:32:36 00:32:36 110/0 Direct, Te 1/12/1 0/0 22:39:61 via vrf-shared:144.4.4.4 0/0 00:32:36 Direct, vrf-shared:Te 1/4/1 0/0 00:32:36 DellEMC# show ip route vrf VRF-Green O 33.3.3.3/32 00:00:11 via 133.3.3.3 C Direct, Te 1/13/1 0/0 133.3.3.
While importing these routes into VRF-blue, you can further specify match conditions at the import end to define the filtering criteria based on which the routes are imported into VRF-blue. You can define a route-map import_ospf_protocol and then specify the match criteria as OSPF using the match source-protocol ospf command. You can then use the ip route-import route-map command to import routes matching the filtering criteria defined in the import_ospf_protocol route-map.
O 22.2.2.2/32 00:00:11 via 122.2.2.2 O via vrf-red:144.4.4.4 0/0 00:32:36 << only OSPF and BGP leaked from VRF-red 44.4.4.4/32 110/0 Important Points to Remember • • • Only Active routes are eligible for leaking. For example, if VRF-A has two routes from BGP and OSPF, in which the BGP route is not active. In this scenario, the OSPF route takes precedence over BGP.
62 Virtual Router Redundancy Protocol (VRRP) VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN). The MASTER router is chosen from the virtual routers by an election process and forwards packets sent to the next hop IP address.
Figure 173. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. In conjunction with Virtual Link Trunking (VLT), you can configure optimized forwarding with virtual router redundancy protocol (VRRP).
Table 136. Recommended VRRP Advertise Intervals Total VRRP Groups Recommended Advertise Interval Groups/Interface Less than 250 1 second 12 Between 250 and 450 2–3 seconds 24 Between 450 and 600 3–4 seconds 36 Between 600 and 800 4 seconds 48 Between 800 and 1000 5 seconds 84 Between 1000 and 1200 7 seconds 100 Between 1200 and 1500 8 seconds 120 VRRP Configuration By default, VRRP is not configured.
interface TenGigabitEthernet 1/1/1 ip address 10.10.10.1/24 ! vrrp-group 111 no shutdown Configuring the VRRP Version for an IPv4 Group For IPv4, you can configure a VRRP group to use one of the following VRRP versions: • • VRRPv2 as defined in RFC 3768, Virtual Router Redundancy Protocol (VRRP) VRRPv3 as defined in RFC 5798, Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6 You can also migrate a IPv4 group from VRRPv2 to VRRP3.
• The virtual IP addresses must be in the same subnet as the primary or secondary IP addresses configured on the interface. Though a single VRRP group can contain virtual IP addresses belonging to multiple IP subnets configured on the interface, Dell EMC Networking recommends configuring virtual IP addresses belonging to the same IP subnet for any one VRRP group. • • • For example, an interface (on which you enable VRRP) contains a primary IP address of 50.1.1.1/24 and a secondary IP address of 60.1.1.
VRF: 0 default State: Master, Priority: 100, Master: 10.10.2.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 27, Gratuitous ARP sent: 2 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.2.2 10.10.2.3 Authentication: When the VRRP process completes its initialization, the State field contains either Master or Backup.
NOTE: Authentication for VRRPv3 is not supported. To configure simple authentication, use the following command. • Configure a simple text password. INTERFACE-VRID mode authentication-type simple [encryption-type] password Parameters: • • encryption-type: 0 indicates unencrypted; 7 indicates encrypted. password: plain text. The bold section shows the encryption type (encrypted) and the password.
Changing the Advertisement Interval By default, the MASTER router transmits a VRRP advertisement to all members of the VRRP group every one second, indicating it is operational and is the MASTER router. If the VRRP group misses three consecutive advertisements, the election process begins and the BACKUP virtual router with the highest priority transitions to MASTER.
For a virtual group, you can track the line-protocol state or the routing status of any of the following interfaces with the interface interface parameter: • • • • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. For a port channel interface, enter the keywords port-channel then a number.
The following example shows verifying the tracking status.
When you configure both CLIs, the later timer rules VRRP enabling. For example, if you set vrrp delay reload 600 and vrrp delay minimum 300, the following behavior occurs: • • When the system reloads, VRRP waits 600 seconds (10 minutes) to bring up VRRP on all interfaces that are up and configured for VRRP. When an interface comes up and becomes operational, the system waits 300 seconds (5 minutes) to bring up VRRP on that interface.
Figure 174. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#interface tengigabitethernet 2/31/1 R2(conf-if-te-2/31/1)#ip address 10.1.1.1/24 R2(conf-if-te-2/31/1)#vrrp-group 99 R2(conf-if-te-2/31/1-vrid-99)#priority 200 R2(conf-if-te-2/31/1-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31/1-vrid-99)#no shut R2(conf-if-te-2/31/1)#show conf ! interface TenGigabitEthernet 2/31/1 ip address 10.1.1.
-----------------TenGigabitEthernet 2/31/1, VRID: 99, Net: 10.1.1.1 VRF: 0 default State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.3 Authentication: (none) R2# Router 3 R3(conf)#interface tengigabitethernet 3/21/1 R3(conf-if-te-3/21/1)#ip address 10.1.1.
Figure 175. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
ipv6 address 1::1/64 vrrp-group 10 priority 100 virtual-address fe80::10 virtual-address 1::10 no shutdown R2(conf-if-te-1/1/1)#end R2#show vrrp -----------------TenGigabitEthernet 1/1/1, IPv6 VRID: 10, Version: 3, Net:fe80::201:e8ff:fe6a:c59f VRF: 0 default State: Master, Priority: 100, Master: fe80::201:e8ff:fe6a:c59f (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 135 Virtual MAC address: 00:00:5e:
instance in order that there is one MASTER and one backup router for each VRF. In VRF-1 and VRF-2, Switch-2 serves as owner-master of the VRRP group and Switch-1 serves as the backup. On VRF-3, Switch-1 is the owner-master and Switch-2 is the backup. In VRF-1 and VRF-2 on Switch-2, the virtual IP and node IP address, subnet, and VRRP group are the same. On Switch-1, the virtual IP address, subnet, and VRRP group are the same in VRF-1 and VRF-2, but the IP address of the node interface is unique.
! S1(conf)#interface TenGigabitEthernet 1/3/1 S1(conf-if-te-1/3/1)#ip vrf forwarding VRF-3 S1(conf-if-te-1/3/1)#ip address 20.1.1.5/24 S1(conf-if-te-1/3/1)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-te-1/3/1-vrid-105)#priority 255 S1(conf-if-te-1/3/1-vrid-105)#virtual-address 20.1.1.5 S1(conf-if-te-1/3/1)#no shutdown DellEMC#show vrrp tengigabitethernet 2/8/1 -----------------TenGigabitEthernet 2/8/1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.
This VLAN scenario often occurs in a service-provider network in which you configure VLAN tags for traffic from multiple customers on customer-premises equipment (CPE), and separate VRF instances associated with each VLAN are configured on the provider edge (PE) router in the point-of-presence (POP).
10.1.1.100 Authentication: (none) VRRP in VRF: Switch-2 VLAN Configuration Switch-2 S2(conf)#ip vrf VRF-1 1 ! S2(conf)#ip vrf VRF-2 2 ! S2(conf)#ip vrf VRF-3 3 ! S2(conf)#interface TenGigabitEthernet 1/1/1 S2(conf-if-te-1/1/1)#no ip address S2(conf-if-te-1/1/1)#switchport S2(conf-if-te-1/1/1)#no shutdown ! S2(conf-if-te-1/1/1)#interface vlan 100 S2(conf-if-vl-100)#ip vrf forwarding VRF-1 S2(conf-if-vl-100)#ip address 10.10.1.
Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 419, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) VRRP for IPv6 Configuration This section shows VRRP IPv6 topology with CLI configurations.
NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be master even if one of two routers has a higher IP or IPv6 address. Router 2 R2(conf)#interface tengigabitethernet 1/1/1 R2(conf-if-te-1/1/1)#no ip address R2(conf-if-te-1/1/1)#ipv6 address 1::1/64 R2(conf-if-te-1/1/1)#vrrp-group 10 NOTE: You must configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
VRF: 0 default State: Backup, Priority: 100, Master: fe80::201:e8ff:fe6a:c59f Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 11, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:0a Virtual IP address: 1::10 fe80::10 DellEMC#show vrrp tengigabitethernet 1/1/1 TenGigabitEthernet 1/1/1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 0 default State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold
Port-channel 1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 2 vrf2 State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 548, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Proxy Gateway with VRRP VLT proxy gateway solves the inefficient traffic trombone problem when VLANs are extended between date cen
• • • The core routers C1 and D1 in the local VLT domain are connected to the core routers C2 and D2 in the remote VLT Domain using VLT links. The core routers C1 and D1 in local VLT Domain along with C2 and D2 in the remote VLT Domain are part of a Layer 3 cloud. The core routers C1, D1, C2, D2 are in a VRRP group with the same vrrp-group ID. When a virtual machine running in Server Rack 1 migrates to Server Rack 2, L3 packets for that VM are routed through the default gateway.
unit-id 1 peer-routing interface port-channel 128 channel member ten 1/1/1 channel member ten 1/1/2 no shutdown int ten 1/5/1 port-channel-protocol lacp port-channel 10 mode active no shut int ten 1/4/1 port-channel-protocol lacp port-channel 20 mode active no shut interface port-channel 10 vlt-peer-lag po 10 switchport no shutdown interface port-channel 20 vlt-peer-lag po 20 switchport no shutdown int vlan 100 ip address 100.1.1.
interface port-channel 10 vlt-peer-lag po 10 switchport no shutdown interface port-channel 20 vlt-peer-lag po 20 switchport no shutdown int vlan 100 ip address 100.1.1.3/24 tagged port-channel 10 vrrp-group 10 advertise-interval 60 virtual-ip 100.1.1.254 priority 100 no shutdown int vlan 200 tagged port-channel 20 no shutdown router ospf 10 network 100.1.1.0/24 area 0 Sample configuration of D2: vlt domain 10 peer-link port-channel 128 back-up destination 10.16.140.
int vlan 200 tagged port-channel 20 no shutdown router ospf 10 network 100.1.1.
63 Debugging and Diagnostics Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • • • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board. Level 1 — A smaller set of diagnostic tests.
When the tests are complete, the system displays the following message and automatically reboots the unit. DellEMC#00:09:42 : Diagnostic test results are stored on file: flash:/TestReport-SU-1.txt Diags completed... Rebooting the system now!!! Mar 12 10:40:35: %S6000:0 %DIAGAGT-6-DA_DIAG_DONE: Diags finished on stack unit 0 DellEMC#00:09:42 : Diagnostic test results are stored on file: flash:/TestReport-SU-0.txt Diags completed...
DellEMC#Dec 15 04:14:07: %S4820:0 %DIAGAGT-6-DA_DIAG_STARTED: Starting diags on stack unit 1 00:12:10 : System may take additional time for Driver Init. 00:12:10 : Approximate time to complete the Diags ... 6 Mins The following example shows the diag command (stack member).
Test 7 - Psu Fan Status Monitor Test ................................ NOT PRESENT Test 8.000 - Psu0 Fan AirFlow Type Test ............................. PASS diagS6000IsPsuGood[954]: ERROR: Psu:1, Power supply is not present. Test 8.001 - Psu1 Fan AirFlow Type Test .............................NOT PRESENT Test 8 - Psu Fan AirFlow Type Test ..................................NOT PRESENT Test 9 - Power Rail Status Test ..................................... PASS Test 10.000 - FanTray0 Presence Test .............
Auto Save on Crash or Rollover Exception information for MASTER or standby units is stored in the flash:/TRACE_LOG_DIR directory. This directory contains files that save trace information when there has been a task crash or timeout. • • On a MASTER unit, you can reach the TRACE_LOG_DIR files by FTP or by using the show file command from the flash:// TRACE_LOG_DIR directory.
QSFP 52 Bias High Warning threshold QSFP 52 RX Power High Warning threshold QSFP 52 Temp Low Warning threshold QSFP 52 Voltage Low Warning threshold QSFP 52 Bias Low Warning threshold QSFP 52 RX Power Low Warning threshold =================================== QSFP 52 Temperature QSFP 52 Voltage QSFP 52 TX1 Bias Current QSFP 52 TX2 Bias Current QSFP 52 TX3 Bias Current QSFP 52 TX4 Bias Current QSFP 52 RX1 Power QSFP 52 RX2 Power QSFP 52 RX3 Power QSFP 52 RX4 Power = = = = = = 9.500mA 1.738mW 0.000C 3.
Recognize an Under-Voltage Condition If the system detects an under-voltage condition, it sends an alarm. To recognize this condition, look for the following system message: %CHMGR-1-CARD_SHUTDOWN: Major alarm: stack unit 2 down - auto-shutdown due to under voltage. This message indicates that the specified card is not receiving enough power. In response, the system first shuts down Power over Ethernet (PoE). If the under-voltage condition persists, line cards are shut down, then the RPMs.
Dell EMC Networking OS Behavior: If you configure 1Q, save the running-config to the startup-config, and then delete the startup-config and reload the chassis. The only way to return to the default buffer profile is to remove the 1Q profile configured and then reload the chassis. If you have already applied a custom buffer profile on an interface, the buffer-profile global command fails and a message similar to the following displays: % Error: User-defined buffer profile already applied.
Drops in Interface Te 2/1/1: --- Ingress Drops --Ingress Drops IBP CBP Full Drops PortSTPnotFwd Drops IPv4 L3 Discards Policy Discards Packets dropped by FP (L2+L3) Drops Port bitmap zero Drops Rx VLAN Drops --- Ingress MAC counters--Ingress FCSDrops Ingress MTUExceeds --- MMU Drops --Ingress MMU Drops HOL DROPS(TOTAL) HOL DROPS on COS0 HOL DROPS on COS1 HOL DROPS on COS2 HOL DROPS on COS3 HOL DROPS on COS4 HOL DROPS on COS5 HOL DROPS on COS6 HOL DROPS on COS7 HOL DROPS on COS8 HOL DROPS on COS9 HOL DROPS o
0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1036 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0 0 0 11 0 0 0 12 0 0 0 13 0 0 0 14 0 0 0 15 0 0 0 16 0 0 0 17 2144854 0 124904297
41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 49 0 49 0 49 0 52 0 52 0 52 0 52 0 53 0 53 0 53 0 53 0 54/1 0 54/2 0 54/3 0 54/4 0 Internal 0 Internal 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 61 0 62 0 63 0 64 0 65 0 66 0 67 0 68 0 69 0 70 0 71 0 72 0 53 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46594
noClus :0 recvd :773 dropped :0 recvToNet :773 rxError :0 rxFwdError :0 rxDatapathErr :0 rxPkt(COS0 ) :0 rxPkt(COS1 ) :0 rxPkt(COS2 ) :0 rxPkt(COS3 ) :0 rxPkt(COS4 ) :0 rxPkt(COS5 ) :0 rxPkt(COS6 ) :0 rxPkt(COS7 ) :0 rxPkt(COS8 ) :773 rxPkt(COS9 ) :0 rxPkt(COS10) :0 rxPkt(COS11) :0 rxPkt(UNIT0) :773 transmitted :12698 txRequested :12698 noTxDesc :0 txError :0 txReqTooLarge :0 txInternalError :0 txDatapathErr :0 txPkt(COS0 ) :0 txPkt(COS1 ) :0 txPkt(COS2 ) :0 txPkt(COS3 ) :0 txPkt(COS4 ) :0 txPkt(COS5 ) :0 t
0 throttles, 0 discarded, 0 collisions Rate info (interval 45 seconds): Input 00.00 Mbits/sec, 2 packets/sec, 0.00% of line-rate Output 00.06 Mbits/sec, 8 packets/sec, 0.00% of line-rate DellEMC# Display Stack Member Counters You can use the show hardware command to display internal receive and transmit statistics, based on the selected command option. The following example is a sample of the output for the counters option.
TX - Fragment counter Interface Te 1/1/1 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter --------------------Interface Fo 1/60 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter RX - IPV6 L3 routed multicast Packets RX - Unicast Packet Counter RX - 64 Byte Frame Counter RX - 64 to 127 Byte Frame Counter RX - 128 to 255 Byte Frame Counter RX - 256 to 511 Byte Frame
Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 Routed Multicast Packets RX - IPV6 L3 Unicast Frame Counter RX - IPV6 L3 Routed Multicast Packets RX - Unicast Packet Counter RX - 64 Byte Frame Counter RX - 65 to 127 Byte Frame Counter RX - 128 to 255 Byte Frame Counter RX - 256 to 511 Byte Frame Counter RX - 512 to 1023 Byte Frame Counter RX - 1024 to 1518 Byte Frame Counter RX - 1519 to 1522 Byte Good VLAN Frame Counter RX - 1519 to 2047 Byte Frame Counter RX - 2048 to 4095 Byte Frame Counter R
Mini Core Dumps Dell EMC Networking OS supports mini core dumps on the application and kernel crashes. The mini core dump applies to Master, Standby, and Member units. Application and kernel mini core dumps are always enabled. The mini core dumps contain the stack space and some other minimal information that you can use to debug a crash. These files are small files and are written into flash until space is exhausted. When the flash is full, the write process is stopped.
You can use the capture-duration timer and the packet-count counter at the same time. The TCP dump stops when the first of the thresholds is met. That means that even if the duration timer is 9000 seconds, if the maximum file count parameter is met first, the dumps stop. To enable a TCP dump, use the following command. • Enable a TCP dump for CPU bound traffic.
64 Standards Compliance This chapter describes standards compliance for Dell EMC Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell EMC Networking OS, the system also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website. Click “Browse and search IETF documents,” enter an RFC number, and inspect the top of the resulting document for obsolescence citations to related RFCs.
RFC and I-D Compliance Dell EMC Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell EMC Networking OS first supports the standard. General Internet Protocols The following table lists the Dell EMC Networking OS support per platform for general internet protocols. Table 138.
R F C # Full Name S-Series S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 24 Definition of 7.7.1 74 the Differentiate d Services Field (DS Field) in the IPv4 and IPv6 Headers 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 2 PPP over 61 SONET/SDH 5 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 2 6 9 8 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.
RF C# Full Name S-Series S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 130 5 Network Time Protocol (Version 3) Specification, Implementation and Analysis 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 1519 Classless Inter-Domain Routing 7.6.1 (CIDR): an Address Assignment and Aggregation Strategy 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 154 2 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) Clarifications and Extensions for 7.6.
RFC Full Name # S-Series S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 4291 Internet Protocol Version 6 (IPv6) Addressing Architecture 7.8.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 4443 Internet Control Message Protocol (ICMPv6) for the IPv6 Specification 7.8.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 4861 8.3.12.0 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 4862 IPv6 Stateless Address Autoconfiguration 8.3.12.0 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.
Open Shortest Path First (OSPF) The following table lists the Dell EMC Networking OS support per platform for OSPF protocol. Table 142. Open Shortest Path First (OSPF) RFC # Full Name S-Series/ZSeries S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 1587 The OSPF Not-SoStubby Area (NSSA) Option 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 2154 OSPF with Digital Signatures 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) 2370 The OSPF Opaque LSA Option 7.6.1 9.8(0.
RFC# Full Name S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 5308 Routing IPv6 with IS-IS 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) draft-ietfisisigpp2poverlan-06 Point-to-point operation over LAN in link-state routing protocols 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.1) draftkaplanisis-e xteth-02 Extended Ethernet Frame Size 9.8(0.0P2) Support 9.8(0.0P5) 9.8(1.0) 9.10(0.1) 9.10(0.
Network Management The following table lists the Dell EMC Networking OS support per platform for network management protocol. Table 146. Network Management RFC# Full Name S4810 S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 1155 Structure and Identification of Management Information for TCP/IP-based Internets 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) 1156 Management Information Base for 7.6.1 Network Management of TCP/IP-based internets 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.
RFC# Full Name S4810 S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 2572 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) 2574 User-based Security Model 7.6.1 (USM) for version 3 of the Simple Network Management Protocol (SNMPv3) 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) 2575 View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) 7.6.1 9.8(0.0P2) 9.8(0.
RFC# Full Name S4810 S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON High Capacity Networks (64 bits): Ethernet Statistics High-Capacity Table, Ethernet History HighCapacity Table 3416 Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP) 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) 3418 Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.
RFC# Full Name S4810 S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON draftietfnetmod interfac escfg-03 Defines a YANG data model for the configuration of network interfaces. Used in the Programmatic Interface RESTAPI feature. 9.2(0.0) 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) IEEE 802.1A B Management Information Base module for LLDP configuration, statistics, local system data and remote systems data components. 7.7.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) IEEE 802.
RFC# Full Name SIONMIB by providing proprietary SNMP OIDs for other counters displayed in the "show interfaces" output) FORCE Force10 Enterprise Link 10Aggregation MIB LINKA GGMIB S4810 S3048–ON S4048–ON Z9100–ON S4048T-ON S6010–ON 7.6.1 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) 9.8(0.0P2) 9.8(0.0P5) 9.8(1.0) 9.8(1.0) 9.8(1.0) FORCE Force10 E-Series Enterprise 10Chassis MIB CHASS IS-MIB FORCE Force10 File Copy MIB 10(supporting SNMP SET COPY- operation) CONFI G-MIB 7.7.1 9.8(0.
Some pages of iSupport require a login. To request an iSupport account, go to: https://www.force10networks.com/CSPortal20/AccountRequest/AccountRequest.aspx If you have forgotten or lost your account information, contact Dell TAC for assistance.
65 X.509v3 supports X.509v3 standards. Topics: • • • • • • • • • Introduction to X.509v3 certificates X.509v3 support in Information about installing CA certificates Information about Creating Certificate Signing Requests (CSR) Information about installing trusted certificates Transport layer security (TLS) Online Certificate Status Protocol (OSCP) Verifying certificates Event logging Introduction to X.509v3 certificates X.
Advantages of X.509v3 certificates Public key authentication is preferred over password-based authentication, although both may be used in conjunction, for various reasons. Public-key authentication provides the following advantages over normal password-based authentication: • • • Public-key authentication avoids the human problems of low-entropy password selection and provides more resistance to brute-force attacks than password-based authentication.
The other hosts on the network, such as the SUT switch, syslog server, and OCSP server, generate private keys and create Certificate Signing Requests (CSRs). The hosts then upload the CSRs to the Intermediate CA or make the CSRs available for the Intermediate CA to download. generates a CSR using the crypto cert generate request command. The hosts on the network (SUT, syslog, OCSP…) also download and install the CA certificates from the Root and Intermediate CAs.
Installing CA certificate To install a CA certificate, enter the crypto ca-cert install {path} command in Global Configuration mode. Information about Creating Certificate Signing Requests (CSR) Certificate Signing Request (CSR) enables a device to get a X.509v3 certificate from a CA. In order for a device to get a X.509v3 certificate, the device first requests a certificate from a CA through a Certificate Signing Request (CSR).
NOTE: The command contains multiple options with the Common Name being a required field and blanks being filled in for unspecified fields. Information about installing trusted certificates Dell EMC Networking OS also enables you to install a trusted certificate. The system can then present this certificate for authentication to clients such as SSH and HTTPS. This trusted certificate is also presented to the TLS server implementations that require client authentication such as Syslog.
TLS compression is disabled by default. TLS session resumption is also supported to reduce processor and traffic overhead due to public key cryptographic operations and handshake traffic. However, the maximum time allowed for a TLS session to resume without repeating the TLS authentication or handshake process is configurable with a default of 1 hour. You can also disable session resumption.
Configuring Revocation Behavior You can configure the system behavior if an OCSP responder fails. By default, when all the OCSP responders fail to send a response to an OSCP request, the system accepts the certificate and logs the event. However, you can configure the system to reject the certificate in case OCSP responders fail.
• A secure session negotiation fails due to invalid, expired, or revoked certificate. 1064 X.