Dell Networking Configuration Guide for the Z9500 Switch 9.9(0.
Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2015 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide.............................................................................................................31 Audience........................................................................................................................................................................... 31 Conventions......................................................................................................................................................................
Creating a Custom Privilege Level............................................................................................................................... 51 Removing a Command from EXEC Mode................................................................................................................... 51 Moving a Command from EXEC Privilege Mode to EXEC Mode.................................................................................51 Allowing Access to CONFIGURATION Mode Commands............
Important Points to Remember.................................................................................................................................. 73 Restoring Factory Default Environment Variables....................................................................................................... 73 5 802.1X........................................................................................................................... 76 Port-Authentication Process.................................
Resequencing an ACL or Prefix List.......................................................................................................................... 107 Route Maps.................................................................................................................................................................... 108 Implementation Information......................................................................................................................................
AS Path.................................................................................................................................................................... 150 Next Hop................................................................................................................................................................... 151 Multiprotocol BGP...............................................................................................................................................
Enabling MBGP Configurations....................................................................................................................................... 187 BGP Regular Expression Optimization............................................................................................................................ 188 Debugging BGP..............................................................................................................................................................
Data Center Bridging Exchange Protocol (DCBx)...........................................................................................................227 Enabling Data Center Bridging........................................................................................................................................228 DCB Maps and its Attributes....................................................................................................................................
Sample DCB Configuration.............................................................................................................................................259 PFC and ETS Configuration Command Examples.................................................................................................... 260 13 Debugging and Diagnostics........................................................................................ 261 Offline Diagnostics.......................................................
Option 82..................................................................................................................................................................301 DHCP Snooping....................................................................................................................................................... 302 Configuring the DHCP secondary-subnet................................................................................................................
Enabling FIPS Mode.......................................................................................................................................................330 Generating Host-Keys.....................................................................................................................................................331 Monitoring FIPS Mode Status.........................................................................................................................................
Viewing IGMP Enabled Interfaces.................................................................................................................................. 357 Selecting an IGMP Version............................................................................................................................................. 357 Viewing IGMP Groups....................................................................................................................................................
Port Channel Benefits.............................................................................................................................................. 375 Port Channel Implementation................................................................................................................................... 375 Interfaces in Port Channels......................................................................................................................................
Implementation Information..................................................................................................................................... 400 Configuration Tasks for IP Addresses............................................................................................................................. 400 Assigning IP Addresses to an Interface...........................................................................................................................
IPv6 Neighbor Discovery................................................................................................................................................ 419 IPv6 Neighbor Discovery of MTU Packets............................................................................................................... 420 Configuration Task List for IPv6 RDNSS..................................................................................................................
Changing the IS-Type................................................................................................................................................451 Redistributing IPv4 Routes.......................................................................................................................................454 Redistributing IPv6 Routes.......................................................................................................................................
Important Points about Configuring Redundant Pairs...............................................................................................484 Far-End Failure Detection...............................................................................................................................................485 FEFD State Changes................................................................................................................................................486 Configuring FEFD.........
Related Configuration Tasks......................................................................................................................................515 Enable MSDP..................................................................................................................................................................519 Manage the Source-Active Cache.................................................................................................................................
Implementation Information............................................................................................................................................543 First Packet Forwarding for Lossless Multicast.............................................................................................................. 544 Multicast Policies...........................................................................................................................................................
Configuring PIM-SM......................................................................................................................................................589 Related Configuration Tasks.....................................................................................................................................590 Enable PIM-SM.............................................................................................................................................................
Creating PVLAN ports.............................................................................................................................................. 619 Creating a Primary VLAN......................................................................................................................................... 620 Creating a Community VLAN....................................................................................................................................
ECN Packet Classification........................................................................................................................................655 Example: Color-marking non-ECN Packets in One Traffic Class............................................................................... 656 Example: Color-marking non-ECN Packets in Different Traffic Classes.................................................................... 656 Configuring Weights and ECN for WRED ...........................
47 Security.................................................................................................................... 686 Role-Based Access Control............................................................................................................................................686 Overview of RBAC...................................................................................................................................................686 User Roles..................................
Configuring Dell Networking OS Options for Trunk Ports......................................................................................... 726 Debugging VLAN Stacking....................................................................................................................................... 726 VLAN Stacking in Multi-Vendor Networks................................................................................................................726 VLAN Stacking Packet Drop Precedence...........
Configuring Contact and Location Information using SNMP...........................................................................................748 Subscribing to Managed Object Value Updates using SNMP......................................................................................... 748 Enabling a Subset of SNMP Traps..................................................................................................................................
Selecting STP Root........................................................................................................................................................ 774 STP Root Guard............................................................................................................................................................. 774 Root Guard Scenario..............................................................................................................................................
57 Uplink Failure Detection (UFD).................................................................................. 801 Feature Description.........................................................................................................................................................801 How Uplink Failure Detection Works.............................................................................................................................. 802 UFD and NIC Teaming................................
Enhanced VLT..........................................................................................................................................................836 VLT Terminology.............................................................................................................................................................837 Configure Virtual Link Trunking.......................................................................................................................................
LLDP Organizational TLV for Proxy Gateway........................................................................................................... 880 Configuring an LLDP VLT Proxy Gateway...................................................................................................................... 882 62 Virtual Router Redundancy Protocol (VRRP)............................................................ 883 VRRP Overview............................................................................
1 About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. Though this guide contains information on protocols, it is not intended to be a complete reference. This guide is a reference for configuring protocols on Dell Networking systems. For complete information about protocols, refer to related documentation, including IETF requests for comments (RFCs).
2 Configuration Fundamentals The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
• CONFIGURATION mode allows you to configure security features, time settings, set logging and SNMP functions, configure static ARP and MAC addresses, and set line cards on the system. Beneath CONFIGURATION mode are submodes that apply to interfaces, protocols, and features. The following example shows the submode command structure.
ROUTER OSPFV3 ROUTER RIP SPANNING TREE TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP GRUB Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode. The following table lists the CLI mode, its prompt, and information about how to access and exit the CLI mode. Move linearly through the command modes, except for the end command which takes you directly to EXEC Privilege mode and the exit command which moves you up one command mode level.
CLI Command Mode Prompt Access Command STANDARD ACCESS-LIST Dell(config-std-nacl)# ip access-list standard (IP ACCESS-LIST Modes) EXTENDED ACCESS-LIST Dell(config-ext-nacl)# ip access-list extended (IP ACCESS-LIST Modes) IP COMMUNITY-LIST Dell(config-community-list)# ip community-list AUXILIARY Dell(config-line-aux)# line (LINE Modes) CONSOLE Dell(config-line-console)# line (LINE Modes) VIRTUAL TERMINAL Dell(config-line-vty)# line (LINE Modes) STANDARD ACCESS-LIST Dell(config-std-macl)
CLI Command Mode Prompt Access Command EIS Dell(conf-mgmt-eis)# management egress-interfaceselection FRRP Dell(conf-frrp-ring-id)# protocol frrp LLDP Dell(conf-lldp)# or Dell(confif—interface-lldp)# protocol lldp (CONFIGURATION or INTERFACE Modes) LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE Dell(config-line-console) or Dell(config-line-vty) line console orline vty MONITOR SESSION Dell(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE
TenGigabitEthernet TenGigabitEthernet TenGigabitEthernet TenGigabitEthernet TenGigabitEthernet TenGigabitEthernet 0/4 0/5 0/6 0/7 0/8 0/9 unassigned unassigned unassigned unassigned unassigned unassigned YES YES YES YES YES YES Manual Manual Manual Manual Manual Manual up up up up up up up up up up up up Dell(conf)# do show version Dell Real Time Operating System Software Dell Operating System Version: 2.0 Dell Application Software Version: 9-5 Copyright (c) 1999-2014 by Dell Inc.
Obtaining Help Obtain a list of keywords and a brief functional description of those keywords at any CLI mode using the ? or help command: • To list the keywords available in the current mode, enter ? at the prompt or after a keyword. • Enter ? after a command prompt to list all of the available keywords. The output of this command is the same as the help command.
Short-Cut Key Combination Action CNTL-L Re-enters the previous command. CNTL-N Return to more recent commands in the history buffer after recalling commands with CTRL-P or the UP arrow key. CNTL-P Recalls commands, beginning with the last command. CNTL-R Re-enters the previous command. CNTL-U Deletes the line. CNTL-W Deletes the previous word. CNTL-X Deletes the line. CNTL-Z Ends continuous scrolling of command outputs. Esc B Moves the cursor back one word.
Example of the except Keyword Dell#show system brief | except 0 Slot Status NxtBoot ReqTyp CurTyp Version Ports ----------------------------------------------------2 not present 3 not present 4 not present 5 not present 6 not present The find keyword displays the output of the show command beginning from the first occurrence of specified text. The following example shows this command used in combination with the show linecard all command.
0x0000027f ofmgr 0x00000208 sysmon 0x000002fd tnlmgr 0x00000171 flashmntr 0x000002ec otm 0x000002fb confd 0x00000273 ssCron 0x0000026f confdCfgMgr 0x000003aa login 0x000000ee inetd 0x000000be rngd 0x000000a9 0 0x00000046 0 0x0000001c mount_mfs 0x00000017 mount_mfs 0x00000014 mount_mfs 0x00000002 0 0x00000001 init 0x000001e5 sysmon 0x000002da login 0x00000203 vlthrtbtrly 0x000001fa mount_mfs 3670 367 10000 0.00% 0.01% 0.02% 0 170 17 10000 0.00% 0.00% 0.00% 0 1130 113 10000 0.00% 0.00% 0.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) and system then loads the Dell Networking Operating System. Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption. When the boot process completes, the system status LEDs remain online (green) and the console monitor displays the EXEC mode prompt.
Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter. 1. Install an RJ-45 copper cable into the console port.Use a rollover (crossover) cable to connect the S4810 console port to a terminal server. 2. Connect the other end of the cable to the DTE terminal server. 3.
hostname name Example of the hostname Command Dell(conf)#hostname R1 R1(conf)# Accessing the System Remotely You can configure the system to access it remotely by Telnet or SSH. • The platform has a dedicated management port and a management routing table that is separate from the IP routing table. • You can manage all Dell Networking products in-band via the front-end data ports through interfaces assigned an IP address as well.
Configuring a Username and Password To access the system remotely, configure a system username and password. To configure a system username and password, use the following command. • Configure a username and password to access the system remotely. CONFIGURATION mode username username password [encryption-type] password – encryption-type: specifies how you are inputting the password, is 0 by default, and is not required. * 0 is for inputting the password in clear text.
EXEC Privilege mode show file-systems The output of the show file-systems command in the following example shows the total capacity, amount of free memory, file structure, media type, read/write privileges for each storage device in use. Dell#show file-systems Size(b) Free(b) Feature Type Flags 520962048 213778432 dosFs2.0 USERFLASH 127772672 21936128 dosFs2.
Example of Importing a File to the Local System core1#$//copy ftp://myusername:mypassword@10.10.10.10//Dell/ Dell-EF-8.2.1.0.bin flash:// Destination file name [Dell-EF-8.2.1.0.bin.bin]: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 26292881 bytes successfully copied Save the Running-Configuration The running-configuration contains the current system configuration. Dell Networking recommends coping your runningconfiguration to the startup-configuration.
When you specify the management VRF, the copy operation that is used to transfer files to and from an HTTP server utilizes the VRF table corresponding to the Management VRF to look up the destination. When you specify a nondefault VRF, the VRF table corresponding to that nondefault VRF is used to look up the HTTP server.
NOTE: The MXL and Z9000 platforms currently do not support VRF. These platforms support only the management and default VRFs, which are available by default. As a result, the feature vrf command is not available for these platforms.
2. Go on to the Dell Networking system and copy the software image to the flash drive, using the copy command. 3. Run the verify {md5 | sha256} [ flash://]img-file [hash-value] command. For example, verify sha256 flash://FTOSSE-9.5.0.0.bin 4. Compare the generated hash value to the expected hash value published on the iSupport page.
4 Management This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1. Level Description Level 0 Access to the system begins at EXEC mode, and EXEC mode commands are limited to enable, disable, and exit.
level level command. In the command, specify the privilege level of the user or terminal line and specify all the keywords in the command to which you want to allow access. Allowing Access to Different Modes This section describes how to allow access to the INTERFACE, LINE, ROUTE-MAP, and ROUTER modes. Similar to allowing access to CONFIGURATION mode, to allow access to INTERFACE, LINE, ROUTE-MAP, and ROUTER modes, you must first allow access to the command that enters you into the mode.
Current privilege level is 3. Dell#? capture Capture packet configure Configuring from terminal disable Turn off privileged commands enable Turn on privileged commands exit Exit from the EXEC ip Global IP subcommands monitor Monitoring feature mtrace Trace reverse multicast path from destination to source ping Send echo messages quit Exit from the EXEC show Show running system information [output omitted] Dell#config [output omitted] Dell(conf)#do show priv Current privilege level is 3.
Applying a Privilege Level to a Terminal Line To set a privilege level for a terminal line, use the following command. • Configure a privilege level for a user. CONFIGURATION mode username username privilege level NOTE: When you assign a privilege level between 2 and 15, access to the system begins at EXEC mode, but the prompt is hostname#, rather than hostname>. Configuring Logging The Dell Networking OS tracks changes in the system using event and error messages.
The audit log contains configuration events and information. The types of information in this log consist of the following: • User logins to the switch. • System events for network issues or system issues. • Users making configuration changes. The switch logs who made the configuration changes and the date and time of the change. However, each specific change on the configuration is not logged. Only that the configuration was modified is logged with the user ID, date, and time of the change.
line vty0 ( 10.14.1.91 ) Clearing Audit Logs To clear audit logs, use the clear logging auditlog command in Exec mode. When RBAC is enabled, only the system administrator user role can issue this command. Example of the clear logging auditlog Command Dell# clear logging auditlog Configuring Logging Format To display syslog messages in a RFC 3164 or RFC 5424 format, use the logging version {0 | 1} command in CONFIGURATION mode. By default, the system log version is set to 0.
Figure 2. Setting Up a Secure Connection to a Syslog Server Pre-requisites To configure a secure connection from the switch to the syslog server: 1. On the switch, enable the SSH server Dell(conf)#ip ssh server enable 2. On the syslog server, create a reverse SSH tunnel from the syslog server to FTOS switch, using following syntax: ssh -R :: user@remote_host -nNf In the following example the syslog server IP address is 10.156.166.
Track Login Activity Dell Networking OS enables you to track the login activity of users and view the successful and unsuccessful login events. When you log in using the console or VTY line, the system displays the last successful login details of the current user and the number of unsuccessful login attempts since your last successful login to the system. The system stores the number of unsuccessful login attempts that have occurred in the last 30 days by default.
Unsuccessful login attempt(s) in last 30 day(s): 3 -----------------------------------------------------------------Example of the show login statistics all command The show login statistics all command displays the successful and failed login details of all users in the last 30 days or the custom defined time period. Dell#show login statistics all -----------------------------------------------------------------User: admin Last login time: Mon Feb 16 04:40:00 2015 Last login location: Line vty0 ( 10.14.1.
login concurrent-session limit number-of-sessions Example of Configuring Concurrent Session Limit The following example limits the permitted number of concurrent login sessions to 4. Dell(config)#login concurrent-session limit 4 Enabling the System to Clear Existing Sessions To enable the system to clear existing login sessions, follow this procedure: • Use the following command.
Configuration Task List for System Log Management There are two configuration tasks for system log management: • Disable System Logging • Send System Messages to a Syslog Server Disabling System Logging By default, logging is enabled and log messages are sent to the logging buffer, all terminal lines, the console, and the syslog servers. To disable system logging, use the following commands. • Disable all logging except on the console.
Display the Logging Buffer and the Logging Configuration To display the current contents of the logging buffer and the logging settings for the system, use the show logging command in EXEC privilege mode. When RBAC is enabled, the security logs are filtered based on the user roles. Only the security administrator and system administrator can view the security logs.
• Specify the minimum severity level for logging to terminal lines. CONFIGURATION mode logging monitor level • Specify the minimum severity level for logging to a syslog server. CONFIGURATION mode logging trap level • Specify the minimum severity level for logging to the syslog history table. CONFIGURATION mode logging history level • Specify the size of the logging buffer.
– lpr (for line printer system messages) – mail (for mail system messages) – news (for USENET news messages) – sys9 (system use) – sys10 (system use) – sys11 (system use) – sys12 (system use) – sys13 (system use) – sys14 (system use) – syslog (for syslog messages) – user (for user programs) – uucp (UNIX to UNIX copy protocol) Example of the show running-config logging Command To view nondefault settings, use the show running-config logging command in EXEC mode.
• limit: the range is from 20 to 300. The default is 20. To view the logging synchronous configuration, use the show config command in LINE mode. Enabling Timestamp on Syslog Messages By default, syslog messages do not include a time/date stamp stating when the error or message was created. To enable timestamp, use the following command. • Add timestamp to syslog messages.
CONFIGURATION mode ftp-server enable Example of Viewing FTP Configuration Dell#show running ftp ! ftp-server enable ftp-server username nairobi password 0 zanzibar Dell# Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system.
ip ftp username name To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode, as shown in the example for Enable FTP Server. Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles. Terminal lines on the system provide different means of accessing the system. The console line (console) connects you through the console port in the route processor modules (RPMs).
ip access-list extended testpermit seq 15 permit ip any any ! ipv6 access-list testv6deny seq 10 deny ipv6 3001::/64 any seq 15 permit ipv6 any any ! Dell(conf)# Dell(conf)#line vty 0 0 Dell(config-line-vty)#access-class testv6deny ipv6 Dell(config-line-vty)#access-class testvpermit ipv4 Dell(config-line-vty)#show c line vty 0 exec-timeout 0 0 access-class testpermit ipv4 access-class testv6deny ipv6 ! Configuring Login Authentication for Terminal Lines You can use any combination of up to six authenticati
login authentication myvtymethodlist line vty 1 password myvtypassword login authentication myvtymethodlist line vty 2 password myvtypassword login authentication myvtymethodlist Dell(config-line-vty)# Setting Timeout for EXEC Privilege Mode EXEC timeout is a basic security feature that returns Dell Networking OS to EXEC mode after a period of inactivity on the terminal lines. To set timeout, use the following commands. • Set the number of minutes and seconds.
Login: admin Password: Dell>exit Dell#telnet 2200:2200:2200:2200:2200::2201 Trying 2200:2200:2200:2200:2200::2201... Connected to 2200:2200:2200:2200:2200::2201. Exit character is '^]'. FreeBSD/i386 (freebsd2.force10networks.com) (ttyp1) login: admin Dell# Lock CONFIGURATION Mode Dell Networking OS allows multiple users to make configurations at the same time. You can lock CONFIGURATION mode so that only one user can be in CONFIGURATION mode at any time (Message 2).
Recovering from a Forgotten Password on the Z9000 System If you configure authentication for the console and you exit out of EXEC mode or your console session times out, you are prompted for a password to re-enter. If you forget your password, use the following commands. 1. Log onto the system using the console. 2. Power-cycle the chassis by disconnecting and.then reconnecting the power cord. 3. Press Esc when prompted to abort the boot process.
Ignoring the Startup Configuration and Booting from the FactoryDefault Configuration If you do not want to do not want to boot up with your current startup configuration and do not want to delete it, you can interrupt the boot process and boot up with the Z9500 factory-default configuration. To boot up with the factory-default configuration: 1. Log onto the system using the console. 2. Power-cycle the chassis by disconnecting and then reconnecting the power cord. 3.
save_env default_boot NOTE: This command must be used once for each environment variable. If this step is not completed, the chassis reboots continually. 7. Reboot the chassis. GRUB mode reboot Restoring the Factory Default Settings Restoring the factory-default settings deletes the existing NVRAM settings, startup configuration, and all configured settings such as, stacking or fanout.
• If either partition contains an invalid or corrupted image, the partition is not set in any of the boot lines. If both partitions contain invalid images, the primary, secondary, and default boot lines are set to a Null string. When you use a network boot procedure to boot the switch, the reset boot variables are displayed below restore bootvar in the command output.
BOOT_USER # 4. Assign an IP address and network mask to the Management Ethernet interface. BOOT_USER # interface management ethernet ip address ip_address_with_mask For example, 10.16.150.106/16. 5. Assign an IP address as the default gateway for the system. default-gateway gateway_ip_address For example, 10.16.150.254. 6. The environment variables are auto saved. 7. Reload the system.
5 802.1X 802.1X is an IEEE Standard for port security. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity can be verified (through a username and password, for example). 802.1X employs Extensible Authentication Protocol (EAP) to transfer a device’s credentials to an authentication server (typically RADIUS) using a mandatory intermediary network access device, in this case, a Dell Networking switch.
Figure 4. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. • The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network.
6. If the identity information provided by the supplicant is valid, the authentication server sends an Access-Accept frame in which network privileges are specified. The authenticator changes the port state to authorized and forwards an EAP Success frame. If the identity information is invalid, the server sends an Access-Reject frame. If the port state remains unauthorized, the authenticator forwards an EAP Failure frame. Figure 5. EAP Port-Authentication EAP over RADIUS 802.
RADIUS Attributes for 802.1X Support Dell Networking systems include the following RADIUS attributes in all 802.1X-triggered Access-Request messages: Attribute 31 Calling-station-id: relays the supplicant MAC address to the authentication server. Attribute 41 NAS-Port-Type: NAS-port physical port type. 15 indicates Ethernet. Attribute 61 NAS-Port: the physical port number by which the authenticator is connected to the supplicant.
Enabling 802.1X Enable 802.1X globally. Figure 7. 802.1X Enabled 1. Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.
In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication ! [output omitted] ! interface TenGigabitEthernet 2/1 no ip address dot1x authentication no shutdown ! Dell# To view 802.1X configuration information for an interface, use the show dot1x interface command. In the following example, the bold lines show that 802.1X is enabled on all ports unauthorized by default. Dell#show dot1x interface TenGigabitEthernet 2/1/ 802.
• Configure the maximum number of times the authenticator re-transmits a Request Identity frame. INTERFACE mode dot1x max-eap-req number The range is from 1 to 10. The default is 2. The example in Configuring a Quiet Period after a Failed Authentication shows configuration information for a port for which the authenticator re-transmits an EAP Request Identity frame after 90 seconds and re-transmits for 10 times.
Forcibly Authorizing or Unauthorizing a Port The 802.1X ports can be placed into any of the three states: • ForceAuthorized — an authorized state. A device connected to this port in this state is never subjected to the authentication process, but is allowed to communicate on the network. Placing the port in this state is same as disabling 802.1X on the port. • ForceUnauthorized — an unauthorized state.
dot1x reauthentication [interval] seconds The range is from 1 to 65535. • The default is 3600. Configure the maximum number of times the supplicant can be re-authenticated. INTERFACE mode dot1x reauth-max number The range is from 1 to 10. The default is 2. Example of Re-Authenticating a Port and Verifying the Configuration The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period.
The default is 30. Example of Viewing Configured Server Timeouts The example shows configuration information for a port for which the authenticator terminates the authentication process for an unresponsive supplicant or server after 15 seconds. The bold lines show the new supplicant and server timeouts. Dell(conf-if-Te-1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.
Figure 8. Dynamic VLAN Assignment 1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
• If the supplicant fails authentication a specified number of times, the authenticator places the port in the Authentication-fail VLAN. • If a port is already forwarding on the Guest VLAN when 802.1X is enabled, the port is moved out of the Guest VLAN and the authentication process begins. Configuring a Guest VLAN If the supplicant does not respond within a determined amount of time ([reauth-max + 1] * tx-period, the system assumes that the host does not have 802.
Example of Viewing Configured Authentication View your configuration using the show config command from INTERFACE mode, as shown in the example in Configuring a Guest VLAN or using the show dot1x interface command from EXEC Privilege mode. 802.
6 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
NOTE: You can configure VRF-aware ACLs on interfaces either using a range of VLANs or a range of VRFs but not both. IP Access Control Lists (ACLs) In Dell Networking switch/routers, you can create two different types of IP ACLs: standard or extended. A standard ACL filters packets based on the source IP packet.
To determine whether sufficient ACL CAM space is available to enable a service-policy, use this command. To verify the actual CAM space required, create a class map with all the required ACL rules, then execute the test cam-usage command in Privilege mode. The following example shows the output when executing this command. The status column indicates whether you can enable the policy.
lower-order numbers (order numbers closer to 0) before rules with higher-order numbers so that packets are matched as you intended. By default, all ACL rules have an order of 255. Example of the order Keyword to Determine ACL Sequence Dell(conf)#ip access-list standard acl1 Dell(config-std-nacl)#permit 20.0.0.0/8 Dell(config-std-nacl)#exit Dell(conf)#ip access-list standard acl2 Dell(config-std-nacl)#permit 20.1.1.
Dell(conf-ext-nacl)#permit ip any 10.1.1.1/32 Dell(conf-ext-nacl) Layer 4 ACL Rules Examples The following examples show the ACL commands for Layer 4 packet filtering. Permit an ACL line with L3 information only, and the fragments keyword is present: If a packet’s L3 information matches the L3 information in the ACL line, the packet's FO is checked. • If a packet's FO > 0, the packet is permitted. • If a packet's FO = 0, the next ACL entry is processed.
A standard IP ACL uses the source IP address as its match criterion. 1. Enter IP ACCESS LIST mode by naming a standard IP access list. CONFIGURATION mode ip access-list standard access-listname 2. Configure a drop or forward filter. CONFIG-STD-NACL mode seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte] [dscp] [order] [fragments] NOTE: When assigning sequence numbers to filters, keep in mind that you might need to insert a new filter.
ip access-list standard access-list-name 2. Configure a drop or forward IP ACL filter. CONFIG-STD-NACL mode {deny | permit} {source [mask] | any | host ip-address} [count [byte] [dscp] [order] [fragments] When you use the log keyword, the CP logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.
seq sequence-number {deny | permit} {ip-protocol-number | icmp | ip | tcp | udp} {source mask | any | host ip-address} {destination mask | any | host ip-address} [operator port [port]] [count [byte]] [order] [fragments] When you use the log keyword, the CP logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.
• Configure a deny or permit filter to examine IP packets. CONFIG-EXT-NACL mode {deny | permit} {source mask | any | host ip-address} [count [byte]] [order] [fragments] • Configure a deny or permit filter to examine TCP packets. CONFIG-EXT-NACL mode {deny | permit} tcp {source mask] | any | host ip-address}} [count [byte]] [order] [fragments] • Configure a deny or permit filter to examine UDP packets.
L2 ACL Behavior L3 ACL Behavior Decision on Targeted Traffic Permit Deny L3 ACL denies. Permit Permit L3 ACL permits. NOTE: If you configure an interface as a vlan-stack access port, only the L2 ACL filters the packets. The L3 ACL applied to such a port does not affect traffic. That is, existing rules for other features (such as trace-list, policy-based routing [PBR], and QoS) are applied to the permitted traffic. For information about MAC ACLs, refer to Layer 2.
Configuring an ACL VLAN Group Configure an ACL VLAN group to optimize ACL CAM use. NOTE: After you configure an ACL VLAN group, you must allocate CAM memory for ACL VLAN services to enable CAM optimization. See Allocating ACL VLAN CAM for more information. 1. Create an ACL VLAN group CONFIGURATION mode acl-vlan-group group-name You can create up to eight different ACL VLAN groups. 2. Add a description. ACL-VLAN-GROUP CONFIGURATION (conf-acl-vl-grp) mode description description 3.
Allocating ACL VLAN CAM CAM optimization for ACL VLAN groups is not enabled by default. You must allocate blocks of ACL VLAN CAM to enable ACL CAM optimization by using the cam-acl-vlan command. By default, 0 blocks of CAM are allocated for VLAN services in the VLAN Content Aware Processor (VCAP), an application that modifies VLAN settings before forwarding packets on member interfaces.
no shutdown Dell(conf-if)# To filter traffic on Telnet sessions, use only standard ACLs in the access-class command. Configure Ingress ACLs Ingress ACLs are applied to interfaces and to traffic entering the system. These system-wide ACLs eliminate the need to apply ACLs onto each interface and achieves the same results. By localizing target traffic, it is a simpler implementation. To create an ingress ACL, use the ip access-group command in EXEC Privilege mode.
TenGigabitEthernet 1/1 no ip address ip access-group abcd out no shutdown Dell(conf-if-te-1/1)#end Dell#configure terminal Dell(conf)#ip access-list extended abcd Dell(config-ext-nacl)#permit tcp any any Dell(config-ext-nacl)#deny icmp any any Dell(config-ext-nacl)#permit 1.1.1.2 Dell(config-ext-nacl)#end Dell#show ip accounting access-list ! Extended Ingress IP access list abcd on tengigabitethernet 0/0 seq 5 permit tcp any any seq 10 deny icmp any any seq 15 permit 1.1.1.
Counting ACL Hits You can view the number of packets matching the ACL by using the count option when creating ACL entries. 1. Create an ACL that uses rules with the count option. Refer to Configure a Standard IP ACL Filter. 2. Apply the ACL as an inbound or outbound ACL on an interface. 3. show ip accounting access-list EXEC Privilege mode View the number of packets matching the ACL. IP Prefix Lists IP prefix lists control routing policy.
For a complete listing of all commands related to prefix lists, refer to the Dell Networking OS Command Line Interface Reference Guide. Creating a Prefix List To create a prefix list, use the following commands. 1. Create a prefix list and assign it a unique name. You are in PREFIX LIST mode. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list with a sequence number and a deny or permit action.
{deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: is the minimum prefix length to be matched (0 to 32). • le max-prefix-length: is the maximum prefix length to be matched (0 to 32). Example of Creating a Filter with Dell Networking OS-Assigned Sequence Numbers The example shows a prefix list in which the sequence numbers were assigned by the software.
Applying a Prefix List for Route Redistribution To pass traffic through a configured prefix list, use the prefix list in a route redistribution command. Apply the prefix list to all traffic redistributed into the routing process. The traffic is either forwarded or dropped, depending on the criteria and actions specified in the prefix list. To apply a filter to routes in RIP, use the following commands. • Enter RIP mode. CONFIGURATION mode router rip • Apply a configured prefix list to incoming routes.
Example of Viewing Configured Prefix Lists (ROUTER OSPF mode) To view the configuration, use the show config command in ROUTER OSPF mode, or the show running-config ospf command in EXEC mode. Dell(conf-router_ospf)#show config ! router ospf 34 network 10.2.1.1 255.255.255.255 area 0.0.0.1 distribute-list prefix awe in Dell(conf-router_ospf)# ACL Resequencing ACL resequencing allows you to re-number the rules and remarks in an access or prefix list.
Examples of Resequencing ACLs When Remarks and Rules Have the Same Number or Different Numbers Remarks and rules that originally have the same sequence number have the same sequence number after you apply the resequence command. The example shows the resequencing of an IPv4 access-list beginning with the number 2 and incrementing by 2. Dell(config-ext-nacl)# show config ! ip access-list extended test remark 4 XYZ remark 5 this remark corresponds to permit any host 1.1.1.1 seq 5 permit ip any host 1.1.1.
Implementation Information ACLs and prefix lists can only drop or forward the packet or traffic. Route maps process routes for route redistribution. For example, a route map can be called to filter only specific routes and to add a metric. Route maps also have an “implicit deny.” Unlike ACLs and prefix lists; however, where the packet or traffic is dropped, in route maps, if a route does not match any of the route map conditions, the route is not redistributed.
To view the configuration, use the show config command in ROUTE-MAP mode. Dell(config-route-map)#show config ! route-map dilling permit 10 Dell(config-route-map)# You can create multiple instances of this route map by using the sequence number option to place the route maps in the correct order. Dell Networking OS processes the route maps with the lowest sequence number first.
Example of the match Command to Match All Specified Values In the next example, there is a match only if a route has both of the specified characteristics. In this example, there a match only if the route has a tag value of 1000 and a metric value of 2000. Also, if there are different instances of the same route-map, then it’s sufficient if a permit match happens in any instance of that route-map.
• Match next-hop routes specified in a prefix list (IPv4). CONFIG-ROUTE-MAP mode match ip next-hop {access-list-name | prefix-list prefix-list-name} • Match next-hop routes specified in a prefix list (IPv6). CONFIG-ROUTE-MAP mode match ipv6 next-hop {access-list-name | prefix-list prefix-list-name} • Match source routes specified in a prefix list (IPv4).
• set local-preference value Specify a value for redistributed routes. CONFIG-ROUTE-MAP mode • set metric {+ | - | metric-value} Specify an OSPF or ISIS type for redistributed routes. CONFIG-ROUTE-MAP mode • set metric-type {external | internal | type-1 | type-2} Assign an IP address as the route’s next hop. CONFIG-ROUTE-MAP mode • set next-hop ip-address Assign an IPv6 address as the route’s next hop. CONFIG-ROUTE-MAP mode • set ipv6 next-hop ip-address Assign an ORIGIN attribute.
redistribute static metric 20 metric-type 2 tag 0 route-map staticospf ! route-map staticospf permit 10 match interface TenGigabitEthernet 1/1 match metric 255 set level backbone Configure a Route Map for Route Tagging One method for identifying routes from different routing protocols is to assign a tag to routes from that protocol. As the route enters a different routing domain, it is tagged. The tag is passed along with the route as it passes through different routing protocols.
[nlbclusteracl number] ipv4pbr number }openflow number | fcoe number} [ipv4udfenable] [iscsioptacl number] [vrfv4acl number] Dell(conf)#cam-acl l2acl 1 ipv4acl 8 ipv6acl 2 ipv4qos 0 l2qos 2 l2pt 0 ipmacacl 0 vmanqos 0 ecfmacl 0 ipv4udfenable 3. View the currently configured CAM allocation.
key description udf-id id packetbase PacketBase offset bytes length bytes Dell(conf-udf-tcam)#key innerL3header udf-id 6 packetbase innerL3Header offset 0 length 2 6. View the UDF TCAM configuration. CONFIGURATION-UDF TCAM mode show config Dell(conf-udf-tcam)#show config ! udf-tcam ipnip seq 1 key innerL3header udf-id 6 packetbase innerL3Header offset 0 length 2 Dell(conf-udf-tcam)# 7. Configure the match criteria for the packet type in which UDF offset bytes are parsed.
show config Dell(config-ext-nacl)#show config ! ip access-list extended aa seq 5 permit ip any any udf-pkt-format ipnip udf-qualifier-value ipnip_val1 Dell(config-ext-nacl)# Access Control Lists (ACLs) 117
7 Bare Metal Provisioning (BMP) Support for BMP on the S6000 Switch Starting with Dell Networking OS Release 9.3(0.0), BMP 3.1 is supported on the S6000 platform. For details about the commands and configuration procedures of BMP 3.1, refer the Open Automation Guide. Enhanced Behavior of the stop bmp Command The stop bmp command behaves as follows: • While Dell Networking OS image upgrade is in progress, it aborts the BMP process after the Dell Networking OS image is upgraded.
8 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 9. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state. Refer to BFD Sessions. Flag A bit that indicates packet function.
Field Description My Discriminator A random number generated by the local system to identify the session. Your Discriminator A random number generated by the remote system to identify the session. Discriminator values are necessary to identify the session to which a control packet belongs because there can be many sessions running on a single interface. Desired Min TX Interval The minimum rate at which the local system would like to send control packets to the remote system.
State Description Administratively Down The local system does not participate in a particular session. Down The remote system is not sending control packets or at least not within the detection time for a particular session. Init The local system is communicating. Up Both systems are exchanging control packets. The session is declared down if: • A control packet is not received within the detection time. • Sufficient echo packets are lost.
Figure 10.
Session State Changes The following illustration shows how the session state on a system changes based on the status notification it receives from the remote system. For example, if a session on a system is down and it receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 11.
• Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Configure BFD for Static Routes BFD offers systems a link state detection mechanism for static routes. With BFD, systems are notified to remove static routes from the routing table as soon as the link state change occurs, rather than waiting until packets fail to reach their next hop. Configuring BFD for static routes is a three-step process: 1. Enable BFD globally. 2.
O - OSPF R - Static Route (RTM) LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 2.2.2.2 Te 4/24 Up 100 100 4 R To view detailed session information, use the show bfd neighbors detail command, as shown in the examples in Displaying BFD for BGP Information. Changing Static Route Session Parameters BFD sessions are configured with default intervals and a default role.
Related Configuration Tasks • Changing OSPF Session Parameters • Disabling BFD for OSPF Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 13.
Example of Verifying Sessions with OSPF Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 * 2.2.3.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1 Up 100 100 3 O 2.2.3.
Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors. Related Configuration Tasks • Changing OSPFv3 Session Parameters • Disabling BFD for OSPFv3 Changing OSPFv3 Session Parameters Configure BFD sessions with default intervals and a default role. The parameters that you can configure are: desired tx interval, required min rx interval, detection multiplier, and system role.
• Establish sessions with OSPFv3 neighbors on a single interface. INTERFACE mode ipv6 ospf bfd all-neighbors To view the established sessions, use the show bfd neighbors command. Configure BFD for IS-IS When using BFD with IS-IS, the IS-IS protocol registers with the BFD manager on the RPM. BFD sessions are then established with all neighboring interfaces participating in IS-IS.
To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. ROUTER-ISIS mode • bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface. INTERFACE mode isis bfd all-neighbors Example of Verifying Sessions with IS-IS Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows that IS-IS BFD sessions are enabled.
no bfd all-neighbors • Disable BFD sessions with IS-IS neighbors on a single interface. INTERFACE mose isis bfd all-neighbors disable Configure BFD for BGP In a BGP core network, BFD provides rapid detection of communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers for faster network reconvergence. BFD for BGP is supported on 1GE, 10GE, 40GE, portchannel, and VLAN interfaces. BFD for BGP does not support IPv6 and the BGP multihop feature.
• By establishing BFD sessions with all neighbors discovered by BGP (the bfd all-neighbors command). • By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peer-group-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays.
Disabling BFD for BGP You can disable BFD for BGP. To disable a BFD for BGP session with a specified neighbor, use the first command. To remove the disabled state of a BFD for BGP session with a specified neighbor, use the second command. The BGP link with the neighbor returns to normal operation and uses the BFD session parameters globally configured with the bfd all-neighbors command or configured for the peer group to which the neighbor belongs. • Disable a BFD for BGP session with a specified neighbor.
• Displays routing information exchanged with BGP neighbors, including BFD for BGP sessions. EXEC Privilege mode show ip bgp neighbors [ip-address] Examples of Verifying BGP Information The following example shows verifying a BGP configuration. R2# show running-config bgp ! router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.
Number of messages communicated b/w Manager and Agent: 5 Session Discriminator: 10 Neighbor Discriminator: 11 Local Addr: 2.2.2.3 Local MAC Addr: 00:01:e8:66:da:34 Remote Addr: 2.2.2.
The bold line shows the message displayed when you enable BFD for BGP connections. R2# show ip bgp summary BGP router identifier 10.0.0.1, local AS number 2 BGP table version is 0, main routing table version 0 BFD is enabled, Interval 100 Min_rx 100 Multiplier 3 Role Active 3 neighbor(s) using 24168 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 1.1.1.2 2.2.2.2 3.3.3.
BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP neighbor mode BFD configuration Peer active in peer-group outbound optimization ... R2# show ip bgp neighbors 2.2.2.4 BGP neighbor is 2.2.2.4, remote AS 1, external link Member of peer-group pg1 for session parameters BGP version 4, remote router ID 12.0.0.4 BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP peer-group mode BFD configuration Peer active in peer-group outbound optimization ...
Establishing Sessions with All VRRP Neighbors BFD sessions can be established for all VRRP neighbors at once, or a session can be established with a particular neighbor. Figure 16. Establishing Sessions with All VRRP Neighbors To establish sessions with all VRRP neighbors, use the following command. • Establish sessions with all VRRP neighbors.
I O R V - ISIS OSPF Static Route (RTM) VRRP LocalAddr * 2.2.5.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.5.2 Te 4/25 Down 1000 1000 3 V To view session state information, use the show vrrp command. The bold line shows the VRRP BFD session. Dell(conf-if-te-4/25)#do show vrrp -----------------TenGigabitEthernet 4/1, VRID: 1, Net: 2.2.5.1 VRF:0 default State: Backup, Priority: 1, Master: 2.2.5.
bfd disable • Disable a particular VRRP session on an interface. INTERFACE mode no vrrp bfd neighbor ip-address Configuring Protocol Liveness Protocol liveness is a feature that notifies the BFD manager when a client protocol is disabled. When you disable a client, all BFD sessions for that protocol are torn down. Neighbors on the remote system receive an Admin Down control packet and are placed in the Down state. To enable protocol liveness, use the following command. • Enable Protocol Liveness.
9 Border Gateway Protocol IPv4 (BGPv4) This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). The primary function of the BGP is to exchange network reachability information with other BGP systems.
Figure 17. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 18. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor. Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies.
State Description Idle BGP initializes all resources, refuses all inbound BGP connection attempts, and initiates a TCP connection to the peer. Connect In this state the router waits for the TCP connection to complete, transitioning to the OpenSent state if successful. If that transition is not successful, BGP resets the ConnectRetry timer and transitions to the Active state when the timer expires. Active The router resets the ConnectRetry timer to zero and returns to the Connect state.
Figure 19. BGP Router Rules 1. Router B receives an advertisement from Router A through eBGP. Because the route is learned through eBGP, Router B advertises it to all its iBGP peers: Routers C and D. 2. Router C receives the advertisement but does not advertise it to any peer because its only other peer is Router D, an iBGP peer, and Router D has already learned it through iBGP from Router B. 3.
reduce the options. If a number of best paths is determined, this selection criteria is applied to group’s best to determine the ultimate best path. In non-deterministic mode (the bgp non-deterministic-med command is applied), paths are compared in the order in which they arrive. This method can lead to Dell Networking OS choosing different best paths from a set of paths, depending on the order in which they were received from the neighbors because MED may or may not get compared between the adjacent paths.
b. A path with no AS_PATH configured has a path length of 0. c. AS_CONFED_SET is not included in the AS_PATH length. d. AS_CONFED_SEQUENCE has a path length of 1, no matter how many ASs are in the AS_CONFED_SEQUENCE. 5. Prefer the path with the lowest ORIGIN type (IGP is lower than EGP, and EGP is lower than INCOMPLETE). 6. Prefer the path with the lowest multi-exit discriminator (MED) attribute. The following criteria apply: a.
Figure 21. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path. MED is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria. One AS assigns the MED a value and the other AS uses that value to decide the preferred path.
Figure 22. Multi-Exit Discriminators NOTE: Configuring the set metric-type internal command in a route-map advertises the IGP cost as MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost. If the outbound route-map uses MED, it overwrites IGP MED. Origin The origin indicates the origin of the prefix, or how the prefix came into BGP. There are three origin codes: IGP, EGP, INCOMPLETE.
The AS path is shown in the following example. The origin attribute is shown following the AS path information (shown in bold).
Advertise IGP Cost as MED for Redistributed Routes When using multipath connectivity to an external AS, you can advertise the MED value selectively to each peer for redistributed routes. For some peers you can set the internal/IGP cost as the MED while setting others to a constant pre-defined metric as MED value. Use the set metric-type internal command in a route-map to advertise the IGP cost as the MED to outbound EBGP peers when redistributing routes.
Traditional Format DOT Format 65536 1.0 100000 1.34464 4294967295 65535.65535 When creating Confederations, all the routers in a Confederation must be either 4-Byte or 2-Byte identified routers. You cannot mix them. Configure 4-byte AS numbers with the four-octet-support command. AS4 Number Representation Dell Networking OS supports multiple representations of 4-byte AS numbers: asplain, asdot+, and asdot.
Dell(conf-router_bgp)#show conf ! router bgp 100 bgp asnotation asdot+ bgp four-octet-as-support neighbor 172.30.1.250 local-as 65057
Figure 23. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer. If you do not select “no prepend” (the default), the Local-AS is added to the first AS segment in the AS-PATH.
BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances support for BGP management information base (MIB) with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page.
• 4-byte ASN is supported. The f10BgpM2AsPath4byteEntry table contains 4-byte ASN-related parameters based on the configuration. • If a received update route matches with a local prefix, then that route is discarded. This behavior results from an incorrect BGP configuration. To overcome this issue, you can trigger a route refresh after you properly configure BGP. Traps (notifications) specified in the BGP4 MIB draft are not supported.
Item Default Distance external distance = 20 internal distance = 200 local distance = 200 keepalive = 60 seconds Timers holdtime = 180 seconds Add-path Disabled Enabling BGP By default, BGP is not enabled on the system. Dell Networking OS supports one autonomous system (AS) and assigns the AS number (ASN). To establish BGP sessions and route traffic, configure at least one BGP neighbor or peer. In BGP, routers with an established TCP connection are called neighbors or peers.
CONFIG-ROUTER-BGP mode address-family [ipv4 | ipv6} vrf Use this command to enter BGP for IPv6 mode (CONF-ROUTER_BGPv6_AF). 2. Add a neighbor as a remote AS. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group name} remote-as as-number • peer-group name: 16 characters • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format) Formats: IP Address A.B.C.D You must Configure Peer Groups before assigning it a remote AS. 3. Enable the BGP neighbor.
5 neighbor(s) using 23520 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 10.10.21.1 10.10.32.3 100.10.92.9 192.168.10.1 192.168.12.2 R2# 65123 65123 65192 65123 65123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 never never never never never Active Active Active Active Active For the router’s identifier, Dell Networking OS uses the highest IP address of the Loopback interfaces configured.
0 accepted prefixes consume 0 bytes Prefix advertised 0, rejected 0, withdrawn 0 Connections established 0; dropped 0 Last reset never No active TCP connection Dell# The following example shows verifying the BGP configuration using the show running-config bgp command.. Dell#show running-config bgp ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.
CONFIG-ROUTER-BGP mode bgp asnotation asdot • Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output. Dell(conf-router_bgp)#bgp asnotation asplain Dell(conf-router_bgp)#sho conf ! router bgp 100 bgp four-octet-as-support neighbor 172.30.1.250 remote-as 18508 neighbor 172.30.1.250 local-as 65057 neighbor 172.30.1.250 route-map rmap1 in neighbor 172.30.1.
NOTE: Sample Configurations for enabling peer groups are found at the end of this chapter. 1. Create a peer group by assigning a name to it. CONFIG-ROUTERBGP mode neighbor peer-group-name peer-group 2. Enable the peer group. CONFIG-ROUTERBGP mode neighbor peer-group-name no shutdown By default, all peer groups are disabled. 3. Create a BGP neighbor. CONFIG-ROUTERBGP mode neighbor ip-address remote-as as-number 4. Enable the neighbor. CONFIG-ROUTERBGP mode neighbor ip-address no shutdown 5.
• • neighbor route-reflector-client neighbor send-community A neighbor may keep its configuration after it was added to a peer group if the neighbor’s configuration is more specific than the peer group’s and if the neighbor’s configuration does not affect outgoing updates. NOTE: When you configure a new set of BGP policies for a peer group, always reset the peer group by entering the clear ip bgp peer-group peer-group-name command in EXEC Privilege mode.
10.68.164.1 10.68.165.1 10.68.166.1 10.68.167.1 10.68.168.1 10.68.169.1 10.68.170.1 10.68.171.1 10.68.172.1 10.68.173.1 10.68.174.1 10.68.175.1 10.68.176.1 10.68.177.1 10.68.178.1 10.68.179.1 10.68.180.1 10.68.181.1 10.68.182.1 10.68.183.1 10.68.184.1 10.68.185.1 Dell> Configuring BGP Fast Fall-Over By default, a BGP session is governed by the hold time. BGP routers typically carry large routing tables, so frequent session resets are not desirable.
Capabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) fall-over enabled Update source set to Loopback 0 Peer active in peer-group outbound optimization For address family: IPv4 Unicast BGP table version 52, neighbor version 52 4 accepted prefixes consume 16 bytes Prefix advertised 0, denied 0, withdrawn 0 Connections established 6; dr
When a BGP neighbor connection with authentication configured is rejected by a passive peer-group, Dell Networking OS does not allow another passive peer-group on the same subnet to connect with the BGP neighbor. To work around this, change the BGP configuration or change the order of the peer group configuration. You can constrain the number of passive sessions accepted by the neighbor. The limit keyword allows you to set the total number of sessions the neighbor will accept, between 2 and 265.
router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.
neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.2 allowas-in 9 neighbor 192.168.12.2 update-source Loopback 0 neighbor 192.168.12.2 no shutdown R2(conf-router_bgp)#R2(conf-router_bgp)# Enabling Neighbor Graceful Restart BGP graceful restart is active only when the neighbor becomes established. Otherwise, it is disabled. Graceful-restart applies to all neighbors with established adjacency.
{deny | permit} filter parameter This is the filter that is used to match the AS-path. The entries can be any format, letters, numbers, or regular expressions. You can enter this command multiple times if multiple filters are desired. For accepted expressions, refer to Regular Expressions as Filters. 3. Return to CONFIGURATION mode. AS-PATH ACL mode exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Use a configured AS-PATH ACL for route filtering and manipulation.
Regular Expression Definition ^ (caret) Matches the beginning of the input string. Alternatively, when used as the first character within brackets [^ ], this matches any number except the ones specified within the brackets. $ (dollar) Matches the end of the input string. . (period) Matches any single character, including white space. * (asterisk) Matches 0 or more sequences of the immediately previous character or pattern.
neighbor 10.155.15.2 shutdown Dell(conf-router_bgp)#ex Dell(conf)#ex Dell#show ip as-path-access-lists ip as-path access-list Eagle deny 32$ Dell# Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. With the redistribute command, you can include ISIS, OSPF, static, or directly connected routes in the BGP process. To add routes from other routing instances or protocols, use any of the following commands in ROUTER BGP mode.
The range is from 2 to 64. 2. Allow the specified neighbor/peer group to send/ receive multiple path advertisements. CONFIG-ROUTER-BGP mode neighbor add-path NOTE: The path-count parameter controls the number of paths that are advertised, not the number of paths that are received. Configuring IP Community Lists Within Dell Networking OS, you have multiple methods of manipulating routing attributes. One attribute you can manipulate is the COMMUNITY attribute.
deny deny deny deny deny deny deny deny deny deny deny deny deny deny Dell# 705:20 14551:20 701:112 702:112 703:112 704:112 705:112 14551:112 701:667 702:667 703:667 704:666 705:666 14551:666 Configuring an IP Extended Community List To configure an IP extended community list, use these commands. 1. Create a extended community list and enter the EXTCOMMUNITY-LIST mode. CONFIGURATION mode ip extcommunity-list extcommunity-list-name 2. Two types of extended communities are supported.
Filtering Routes with Community Lists To use an IP community list or IP extended community list to filter routes, you must apply a match community filter to a route map and then apply that route map to a BGP neighbor or peer group. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2. Configure a match filter for all routes meeting the criteria in the IP community or IP extended community list.
route-map map-name [permit | deny] [sequence-number] 2. Configure a set filter to delete all COMMUNITY numbers in the IP community list. CONFIG-ROUTE-MAP mode set comm-list community-list-name delete OR set community {community-number | local-as | no-advertise | no-export | none} Configure a community list by denying or permitting specific community numbers or types of community. 3.
*>i 6.10.0.0/15 *>i 6.14.0.0/15 *>i 6.133.0.0/21 *>i 6.151.0.0/16 --More-- 195.171.0.16 205.171.0.16 205.171.0.16 205.171.0.16 100 100 100 100 0 0 0 0 209 209 209 209 7170 7170 7170 7170 1455 1455 1455 1455 i i i i Changing MED Attributes By default, Dell Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. To change how the MED attribute is used, enter any or all of the following commands.
4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Apply the route map to the neighbor or peer group’s incoming or outgoing routes. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. To view a route map configuration, use the show route-map command in EXEC Privilege mode.
The show ip bgp network command includes multipath information for that network. • Enable multiple parallel paths. CONFIG-ROUTER-BGP mode maximum-paths {ebgp | ibgp} number Filtering BGP Routes Filtering routes allows you to implement BGP policies. You can use either IP prefix lists, route maps, AS-PATH ACLs or IP community lists (using a route map) to control which routes the BGP neighbor or peer group accepts and advertises.
neighbor {ip-address | peer-group-name} distribute-list prefix-list-name {in | out} Configure the following parameters: • ip-address or peer-group-name: enter the neighbor’s IP address or the peer group’s name. • prefix-list-name: enter the name of a configured prefix list. • in: apply the prefix list to inbound routes. • out: apply the prefix list to outbound routes. As a reminder, the following are rules concerning prefix lists: • If the prefix list contains no filters, all routes are permitted.
Filtering BGP Routes Using AS-PATH Information To filter routes based on AS-PATH information, use these commands. 1. Create a AS-PATH ACL and assign it a name. CONFIGURATION mode ip as-path access-list as-path-name 2. Create a AS-PATH ACL filter with a deny or permit action. AS-PATH ACL mode {deny | permit} as-regular-expression 3. Return to CONFIGURATION mode. AS-PATH ACL exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5.
CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-reflector-client When you enable a route reflector, Dell Networking OS automatically enables route reflection to all clients. To disable route reflection between all clients in this reflector, use the no bgp client-to-client reflection command in CONFIGURATION ROUTER BGP mode. All clients must be fully meshed before you disable route reflection.
– as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte). All Confederation routers must be either 4 Byte or 2 Byte. You cannot have a mix of router ASN support. To view the configuration, use the show config command in CONFIGURATION ROUTER BGP mode. Enabling Route Flap Dampening When EBGP routes become unavailable, they “flap” and the router issues both WITHDRAWN and UPDATE notices.
– half-life: the range is from 1 to 45. Number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half after the half-life period expires. The default is 15 minutes. – reuse: the range is from 1 to 20000. This number is compared to the flapping route’s Penalty value. If the Penalty value is less than the reuse value, the flapping route is once again advertised (or no longer suppressed). The default is 750.
To view a count of dampened routes, history routes, and penalized routes when you enable route dampening, look at the seventh line of the show ip bgp summary command output, as shown in the following example (bold). Dell>show ip bgp summary BGP router identifier 10.114.8.
BGP soft-reconfiguration clears the policies without resetting the TCP connection. To reset a BGP connection using BGP soft reconfiguration, use the clear ip bgp command in EXEC Privilege mode at the system prompt. When you enable soft-reconfiguration for a neighbor and you execute the clear ip bgp soft in command, the update database stored in the router is replayed and updates are reevaluated.
Match a Clause with a Continue Clause The continue feature can exist without a match clause. Without a match clause, the continue clause executes and jumps to the specified route-map entry. With a match clause and a continue clause, the match clause executes first and the continue clause next in a specified route map entry. The continue clause launches only after a successful match.
BGP Regular Expression Optimization Dell Networking OS optimizes processing time when using regular expressions by caching and re-using regular expression evaluated results, at the expense of some memory in RP1 processor. BGP policies that contain regular expressions to match against as-paths and communities might take a lot of CPU processing time, thus affect BGP routing convergence.
To disable all BGP debugging, use the no debug ip bgp command. To disable all debugging, use the undebug all command. Storing Last and Bad PDUs Dell Networking OS stores the last notification sent/received and the last bad protocol data unit (PDU) received on a per peer basis. The last bad PDU is the one that causes a notification to be issued. In the following example, the last seven lines shown in bold are the last PDUs.
Capturing PDUs To capture incoming and outgoing PDUs on a per-peer basis, use the capture bgp-pdu neighbor direction command. To disable capturing, use the no capture bgp-pdu neighbor direction command. The buffer size supports a maximum value between 40 MB (the default) and 100 MB. The capture buffers are cyclic and reaching the limit prompts the system to overwrite the oldest PDUs when new ones are received for a given neighbor or direction.
Dell(conf-router_bgp)#do sho ip bg s BGP router identifier 172.30.1.56, local AS number 65056 BGP table version is 313511, main routing table version 313511 207896 network entrie(s) and 207896 paths using 42364576 bytes of memory 59913 BGP path attribute entrie(s) using 2875872 bytes of memory 59910 BGP AS-PATH entrie(s) using 2679698 bytes of memory 3 BGP community entrie(s) using 81 bytes of memory Neighbor AS 1.1.1.2 2 172.30.1.
Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0 R1(conf-if-lo-0)#ip address 192.168.128.1/24 R1(conf-if-lo-0)#no shutdown R1(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.1/24 no shutdown R1(conf-if-lo-0)#int te 1/21 R1(conf-if-te-1/21)#ip address 10.0.1.21/24 R1(conf-if-te-1/21)#no shutdown R1(conf-if-te-1/21)#show config ! interface TengigabitEthernet 1/21 ip address 10.0.1.21/24 no shutdown R1(conf-if-te-1/21)#int te 1/31 R1(conf-if-te-1/31)#ip address 10.0.3.
ip address 10.0.2.2/24 no shutdown R2(conf-if-te-2/31)# R2(conf-if-te-2/31)#router bgp 99 R2(conf-router_bgp)#network 192.168.128.0/24 R2(conf-router_bgp)#neighbor 192.168.128.1 remote 99 R2(conf-router_bgp)#neighbor 192.168.128.1 no shut R2(conf-router_bgp)#neighbor 192.168.128.1 update-source loop 0 R2(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R2(conf-router_bgp)#neighbor 192.168.128.3 no shut R2(conf-router_bgp)#neighbor 192.168.128.
R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 peer-group AAA neighbor 192.168.128.2 update-source Loopback 0 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.3 update-source Loopback 0 neighbor 192.168.128.
R2(conf-router_bgp)# neighbor CC no shutdown R2(conf-router_bgp)# neighbor BBB peer-group R2(conf-router_bgp)# neighbor BBB no shutdown R2(conf-router_bgp)# neighbor 192.168.128.1 peer AAA R2(conf-router_bgp)# neighbor 192.168.128.1 no shut R2(conf-router_bgp)# neighbor 192.168.128.3 peer BBB R2(conf-router_bgp)# neighbor 192.168.128.3 no shut R2(conf-router_bgp)#show conf ! router bgp 99 network 192.168.128.
Hold time is 180, keepalive interval is 60 seconds Received 93 messages, 0 in queue 5 opens, 0 notifications, 5 updates 83 keepalives, 0 route refresh requests Sent 99 messages, 0 in queue 5 opens, 4 notifications, 5 updates 85 keepalives, 0 route refresh requestsCapabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Update source set
10 Content Addressable Memory (CAM) CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 (L2) and Layer 3 (L3) forwarding information, access-lists (ACLs), flows, and routing policies.On a line card, there are one or two CAM (Dual-CAM) modules per port-pipe.
NOTE: When you reconfigure CAM allocation, use the nlbclusteracl number command to change the number of NLB ARP entries. The range is from 0 to 2. The default value is 0. At the default value of 0, eight NLB ARP entries are available for use. This platform supports upto 256 CAM entries. Select 1 to configure 128 entries. Select 2 to configure 256 entries.
cam-acl {default | l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number vman-qos | vman-dual-qos number ecfmacl number nlbcluster number ipv4pbr number openflow number | fcoe number NOTE: If you do not enter the allocation values for the CAM regions, the value is 0. 3. Execute write memory and verify that the new settings are written to the CAM on the next boot. EXEC Privilege mode show cam-acl 4. Reload the system.
L2PT IpMacAcl VmanQos EcfmAcl Openflow : : : : : 0 0 0 0 0 -- linecard 0 -Current Settings(in block sizes) 1 block = 256 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 EcfmAcl : 0 Openflow : 0 -- linecard 1 -Current Settings(in block sizes) 1 block = 256 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 EcfmAcl : 0 Openflow : 0 -- linecard 2 -Current Settings(in block sizes) 1 block = 256 entries L2Acl : 6
| | | | | | | | | | | 1 | | | | | --More-- | | | | | | | | | | | 1 | | | | | IN-L3-TrcList IN-L3-McastFib IN-L3-Qos IN-L3-PBR IN-V6 ACL IN-V6 FIB IN-V6-SysFlow IN-V6-McastFib OUT-L2 ACL OUT-L3 ACL OUT-V6 ACL IN-L2 ACL IN-L2 FIB IN-L3 ACL IN-L3 FIB IN-L3-SysFlow | | | | | | | | | | | | | | | | 1024 9215 8192 1024 0 0 0 0 1024 1024 0 320 32768 12288 262141 2878 | | | | | | | | | | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 1136 2 14 44 | | | | | | | | | | | | | | | | 1024 9215 8192 1024 0 0 0 0 1024 1024 0 3
• When MPLS IP packets are received, Dell Networking OS looks up to five labels deep for the IP header. • When an IP header is present, hashing is based on IP three tuples (source IP address, destination IP address, and IP protocol). • If an IP header is not found after the fifth label, hashing is based on the MPLS labels. • If the packet has more than five MPLS labels, hashing is based on the source and destination MAC address.
show hardware forwarding-table mode Dell#show hardware forwarding-table mode Mode L2 MAC Entries L3 Host Entries L3 Route Entries : : : : Current Settings Default 160K 144K 16K Next Boot Settings scaled-l3-routes 32K 16K 128K Dell# Content Addressable Memory (CAM) 203
11 Control Plane Policing (CoPP) Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 26. CoPP Implemented Versus CoPP Not Implemented Z9500 CoPP Implementation The Z9500 control plane consists of multi-core CPUs with internal queues for handling packets destined to the Route Processor, Control Processor, and line-card CPUs. On the Z9500, CoPP is implemented as a distributed architecture. In this architecture, CoPP operates simultaneously in both distributed and aggregated modes. Distributed CoPP is achieved by applying protocol rate-limiting on each port pipe on a line card.
User-configured ACLs that filter protocol traffic flows to the control plane are automatically applied or disabled as the corresponding protocol is enabled or disabled in the system. In this way, control packets from disabled protocols never reach the control plane. Protocol-based Control Plane Policing To configure a protocol-based CoPP policy, you create an extended ACL rule for the protocol and specify the rate limit in a QoS policy.
17 — 1 18 — 1 19 — 1 20 Source miss, Station move, Trace flow 600 21 BFD 7000 22 HyperPull, FRRP 800 23 sFlow 5000 NOTE: In the line-card CPU, some queues have no protocol traffic mapped to them. These rows appear blank in the preceding table. CoPP Example The illustrations in this section show the benefit of using CoPP compared to not using CoPP on a switch. The following illustration shows how CoPP rate limits protocol traffic destined to the control-plane CPU. Figure 27.
Figure 28. CoPP Versus Non-CoPP Operation Configure Control Plane Policing You can create a CoPP service policy on a per-protocol and/or a per-queue basis that serves as the system-wide configuration for filtering and rate limiting control-plane traffic. Configuring CoPP for Protocols This section lists the commands necessary to create and enable the service-policies for CoPP. For complete information about creating ACLs and QoS rules, refer to Access Control Lists (ACLs) and Quality of Service (QoS).
CONFIGURATION mode ip access-list extended name cpu-qos permit {bgp | dhcp | dhcp-relay | ftp | icmp | igmp | msdp | ntp | ospf | pim | ip | ssh | telnet | vrrp} 3. Create an IPv6 ACL for control-plane traffic policing for a particular protocol. CONFIGURATION mode ipv6 access-list name cpu-qos {bgp | icmp | icmp-nd-na | icmp-nd-ns | icmp-rd-ra | icmprd-rs | ospf | vrrp} 4. Create a QoS input policy for the router and assign the policing.
Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_400k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 400 50 peak 600 50 Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_500k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 500 50 peak 1000 50 Dell(conf-in-qos-policy-cpuqos)#exit The following example shows creating the QoS class map.
Example of Creating a QoS Rate-Limiting Input Policy Dell(conf)#qos-policy-in rate_limit_200k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 200 40 peak 500 40 Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_400k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 400 50 peak 600 50 Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_500k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 500 50 peak 1000 50 Dell(conf-in-qos-policy-cpuqos)#exit Example of
On the Z9500, the range of queue-number values is from 0 to 23. The twenty-four control–plane queues are divided into groups of eight queues for the Route Processor, Control Processor, and line-card CPUs as follows: 3. • Queues 0 to 7 process packets destined to the Control Processor CPU . • Queues 8 to 15 process packets destined to the Route Processor CPU. • Queues 16 to 23 process packets destined to the line-card CPU. Enter Control Plane mode. CONFIGURATION mode control-plane-cpuqos 4.
Displaying CoPP Configuration The CLI provides show commands to display the protocol traffic assigned to each control-plane queue and the current rate-limit applied to each queue. Other show commands display statistical information for trouble shooting CoPP operation. Viewing Queue Rates To view the rates that are currently applied on each control-plane queue, use the show cpu-queue rate [all | queue-id id | range from-queue to-queue] command.
Example of Viewing Queue Mapping for MAC Protocols Dell#show mac protocol-queue-mapping Protocol -------ARP FRRP LACP LLDP GVRP STP ISIS Destination Mac --------------any 01:01:e8:00:00:10/11 01:80:c2:00:00:02 any 01:80:c2:00:00:21 01:80:c2:00:00:00 01:80:c2:00:00:14/15 09:00:2b:00:00:04/05 EtherType --------0x0806 any 0x8809 0x88cc any any any any Queue ----Q2/Q10/Q3/Q11 Q22 Q15 Q7 Q14 Q15 Q15 Q15 EgPort -----CP/RP LP RP CP RP RP RP RP Rate (kbps) ----------600 300 500 500 200 150 500 500 To view the
v6 ICMP NS v6 ICMP RS v6 ICMP BGP OSPF RIP VRRP ICMP IGMP PIM MSDP BFD 802.
Viewing CPU Traffic Statistics To view the statistics collected on CPU traffic, use the show cpu-traffic-stats [cp | rp | linecard {0–2} |all] command. Traffic statistics are sorted on a per-interface basis; the interface receiving the most traffic is displayed first. All CPU and port information is displayed unless you specify a port or CPU queue. Traffic information is displayed for router ports only, not for management interfaces.
DATA=0x00000180 c200000e MASK=0x0000ffff ffffffff action={act=DropPrecedence, param0=1(0x1), param1=0(0), param2=0(0), param3=0(0)} action={act=Drop, param0=0(0), param1=0(0), param2=0(0), param3=0(0)} action={act=CosQCpuNew, param0=1(0x1), param1=0(0), param2=0(0), param3=0(0)} action={act=CopyToCpu, param0=1(0x1), param1=2(0x2), param2=0(0), param3=0(0)} policer= statistics={stat id 2 slice = 9 idx=0 entries=1}{Packets} --More-############## FP Entry for redirecting LACP traffic to CPU Port ############ E
######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-######################## FP Entry --More-#################### FP Entry for --More-####################
v6 VRRP 0 IGMP 0 PIM 0 NTP 0 MULTICAST CATCH ALL 0 v6 MULTICAST CATCH ALL 0 DHCP RELAY/DHCP 0 v6 ICMP NA/v6 ICMP RA 0 v6 ICMP NS/v6 ICMP RS 0 v6 ICMP/ICMP 0 MLD 0 MSDP 0 FTP/TELNET/SSH/L3 LOCAL TERMINATED 0 L3 UNKNOWN/UNRESOLVED ARP 0 iSCSI 0 FCoE 0 SFLOW 0 VLT CTRL/VLT IPM PDU 0 HYPERPULL 0 OPENFLOW 0 L2 DST HIT/BROADCAST 0 VLT TTL1/TRACEFLOW/TTL0/ 0 STATION MOVE/TTL1/IP OPTION/L3 MTU FAIL/SOURCE MISS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dell#show contr
HYPERPULL OPENFLOW FEFD TRACEFLOW FCoE SFLOW L3 LOCAL TERMINATED L3 UNKNOWN/UNRESOLVED ARP L2 DST HIT/BROADCAST MULTICAST CATCH ALL v6 MULTICAST CATCH ALL L3 HEADER ERROR/TTL0 IP OPTION/TTL1 L3 MTU FAIL SOURCE MISS STATION MOVE TX ENTRY DROP ENTRY 0 0 0 0 0 0 0 0 0 0 12600 0 0 0 0 0 887040 0 0 0 0 0 0 0 0 0 0 0 12600 0 0 0 0 0 887040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 To clear the per-protocol counters of rate-limited control-plane traffic at the aggregated (switch) or line card and port set level, u
Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 0 1160300 8515864 0 0 0 0 0 0 1157004 0 0 1160300 8515864 0 0 0 0 0 0 1157004 0 0 0 0 0 0 0 0 0 0 0 0 To clear the per-queue counters of rate-limited traffic at the aggregated (switch) or individual queue level, use the clear control-traffic queue {all | queue-id queue-number} counters command; for example: Dell#clear control-traffic queue queue-id 2 counters Dell# Control Plane Policing (CoPP) 221
12 Data Center Bridging (DCB) NOTE: Data center bridging (DCB) is enabled in Z9500 switch. Ethernet Enhancements in Data Center Bridging The following section describes DCB. The device supports the following DCB features: • Data center bridging exchange protocol (DCBx) • Priority-based flow control (PFC) • Enhanced transmission selection (ETS) To configure PFC, ETS, and DCBx for DCB, refer to Sample DCB Configuration for the CLI configurations.
Traffic Description InterProcess Communication (IPC) traffic InterProcess Communication (IPC) traffic within high-performance computing clusters to share information. Server traffic is extremely sensitive to latency requirements. To ensure lossless delivery and latency-sensitive scheduling of storage and service traffic and I/O convergence of LAN, storage, and server traffic over a unified fabric, IEEE data center bridging adds the following extensions to a classical Ethernet network: • 802.
• • • • • • PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface. However, only four lossless queues are supported on an interface: one for Fibre Channel over Ethernet (FCoE) converged traffic and one for Internet Small Computer System Interface (iSCSI) storage traffic. Configure the same lossless queues on all ports.
• – PFC enabled or disabled – No bandwidth limit or no ETS processing ETS uses the DCB MIB IEEE 802.1azd2.5. Data Center Bridging Exchange Protocol (DCBx) The data center bridging exchange (DCBx) protocol is disabled by default on the S4810; ETS is also disabled. DCBx allows a switch to automatically discover DCB-enabled peers and exchange configuration information. PFC and ETS use DCBx to exchange and negotiate parameters with peer devices.
link according to the 802.1p priority set on a traffic type. You can create lossless flows for storage and server traffic while allowing for loss in case of LAN traffic congestion on the same physical interface. The following illustration shows how PFC handles traffic congestion by pausing the transmission of incoming traffic with dot1p priority 4. Figure 32. Illustration of Traffic Congestion The system supports loading two DCB_Config files: • FCoE converged traffic with priority 3.
Figure 33. Enhanced Transmission Selection The following table lists the traffic groupings ETS uses to select multiprotocol traffic for transmission. Table 12. ETS Traffic Groupings Traffic Groupings Description Group ID A 4-bit identifier assigned to each priority group. The range is from 0 to 7 configurable; 8 - 14 reservation and 15.0 - 15.7 is strict priority group.. Group bandwidth Percentage of available bandwidth allocated to a priority group.
Enabling Data Center Bridging DCB is automatically configured when you configure FCoE or iSCSI optimization. Data center bridging supports converged enhanced Ethernet (CEE) in a data center network. DCB is disabled by default. It must be enabled to support CEE. • Priority-based flow control • Enhanced transmission selection • Data center bridging exchange protocol • FCoE initialization protocol (FIP) snooping DCB processes virtual local area network (VLAN)-tagged packets and dot1p priority values.
As a result, PFC and lossless port queues are disabled on 802.1p priorities, and all priorities are mapped to the same priority queue and equally share the port bandwidth. • To change the ETS bandwidth allocation configured for a priority group in a DCB map, do not modify the existing DCB map configuration. Instead, first create a new DCB map with the desired PFC and ETS settings, and apply the new map to the interfaces to override the previous DCB map settings.
priority-group group-num {bandwidth bandwidth | strict-priority} pfc on The range for priority group is from 0 to 7. Set the bandwidth in percentage. The percentage range is from 1 to 100% in units of 1%. Committed and peak bandwidth is in megabits per second. The range is from 0 to 40000. Committed and peak burst size is in kilobytes. Default is 50. The range is from 0 to 10000. The pfc on command enables priority-based flow control. 3.
Lossless traffic egresses out the no-drop queues. Ingress dot1p traffic from PFC-enabled interfaces is automatically mapped to the no-drop egress queues. 1. Enter INTERFACE Configuration mode. CONFIGURATION mode interface type slot/port 2. Configure the port queues that will still function as no-drop queues for lossless traffic. INTERFACE mode pfc no-drop queues queue-range For the dot1p-queue assignments, refer to the dot1p Priority-Queue Assignment table.
from peer devices. By applying a DCB map with PFC enabled, you enable PFC operations on ingress port traffic. To achieve complete lossless handling of traffic, configure PFC priorities on all DCB egress ports. When you apply or remove a DCB input policy from an interface, one or two CRC errors are expected to be noticed on the ingress ports for each removal or attachment of the policy. This behavior occurs because the port is brought down when PFC is configured.
Applying a DCB Map on a Port When you apply a DCB map with PFC enabled on a switch interface, a memory buffer for PFC-enabled priority traffic is automatically allocated. The buffer size is allocated according to the number of PFC-enabled priorities in the assigned map. To apply a DCB map to an Ethernet port, follow these steps: Table 13. DCB Map to an Ethernet Port Step Task Command Command Mode 1 Enter interface configuration mode on an Ethernet port.
Configuring Lossless Queues DCB also supports the manual configuration of lossless queues on an interface when PFC mode is disabled in a DCB map, apply the map on the interface. The configuration of no-drop queues provides flexibility for ports on which PFC is not needed, but lossless traffic should egress from the interface. Configuring no-drop queues is applicable only on the interfaces which do not need PFC.
Step Task Command Command Mode 4 Return to interface configuration mode. exit DCB MAP 5 Apply the DCB map, created to disable the PFC operation, on the interface dcb-map {name | default} INTERFACE 6 Configure the port queues that still function as no-drop queues for lossless traffic. For the dot1p-queue assignments. pfc no-drop queuesqueue-range INTERFACE The maximum number of lossless queues globally supported on a port is 2.
Although the system contains 12 MB of space for shared buffers, a minimum guaranteed buffer is provided to all the internal and external ports in the system for both unicast and multicast traffic. This minimum guaranteed buffer reduces the total available shared buffer to 9.5 MB. This shared buffer can be used for lossy and lossless traffic. The default behavior causes up to a maximum of 6.6 MB to be used for PFC-related traffic. The remaining approximate space of 1 MB can be used by lossy traffic.
The packets that come in with packet-dot1p 2 alone will be assigned to PG6 on ingress. The packets that come in with packet-dot1p 2 alone will use Q1 (as per dot1p to Queue classification – Table 2) on the egress port. • • • When Peer sends a PFC message for Priority 2, based on above PRIO2COS table (TABLE 2), Queue 1 is halted. Queue 1 starts buffering the packets with Dot1p 2. This causes PG6 buffer counter to increase on the ingress, since P-dot1p 2 is mapped to PG6.
• fpEgrQBuffSnapshotTable • fpIngPgBuffSnapshotTable • fpStatsPerPgTable • pfcPerPrioTable fpEgrQBuffSnapshot This table fetches the BST statistics at Egress Port for the buffer used. This table displays the Snapshot of Table the Buffer cells used by Unicast and Multicast Data and Control Queues. fpIngPgBuffSnapsho This table fetches the BST statistics at the Ingress Port for the Shared Cells, and the Headroom cells used tTable per Priority Group.
Table 17. Priority to Queue Mapping Internalpriority 0 1 2 3 4 5 6 7 Queue 2 0 1 3 4 5 6 7 Default dot1p to queue configuration is as follows: Table 18. Dot1p to Queue Mapping PacketDot1p 0 1 2 3 4 5 6 7 Queue 2 0 1 3 4 5 6 7 PFC and ETS Configuration Examples This section contains examples of how to configure and apply DCB policies on an interface.
The dcb-map-name variable can have a maximum of 32 characters. 2. Create an ETS priority group. CONFIGURATION mode priority-group group-num {bandwidth bandwidth | strict-priority} pfc off The range for priority group is from 0 to 7. Set the bandwidth in percentage. The percentage range is from 1 to 100% in units of 1%. Committed and peak bandwidth is in megabits per second. The range is from 0 to 40000. Committed and peak burst size is in kilobytes. Default is 50. The range is from 0 to 10000. 3.
• ETS TLVs are supported in DCBx versions CIN, CEE, and IEEE2.5. • The DCBx port-role configurations determine the ETS operational parameters (refer to Configure a DCBx Operation). • ETS configurations received from TLVs from a peer are validated. • If there is a hardware limitation or TLV error: – DCBx operation on an ETS port goes down. – New ETS configurations are ignored and existing ETS configurations are reset to the default ETS settings.
Dell(conf-if-te-0/1)#service-policy output test12 Hierarchical Scheduling in ETS Output Policies ETS supports up to three levels of hierarchical scheduling. For example, you can apply ETS output policies with the following configurations: Priority group 1 Assigns traffic to one priority queue with 20% of the link bandwidth and strict-priority scheduling. Priority group 2 Assigns traffic to one priority queue with 30% of the link bandwidth.
• You can enable link-level flow control on the interface (refer to Using Ethernet Pause Frames). To delete the input policy, first disable link-level flow control. PFC is then automatically enabled on the interface because an interface is by default PFC-enabled. • PFC still allows you to configure lossless queues on a port to ensure no-drop handling of lossless traffic (refer to Configuring Lossless Queues).
• If the peer configuration received is compatible with the internally propagated port configuration, the link with the DCBx peer is enabled. • If the received peer configuration is not compatible with the currently configured port configuration, the link with the DCBx peer port is disabled and a syslog message for an incompatible configuration is generated. The network administrator must then reconfigure the peer device so that it advertises a compatible DCB configuration.
NOTE: On a DCBx port, application priority TLV advertisements are handled as follows: • The application priority TLV is transmitted only if the priorities in the advertisement match the configured PFC priorities on the port. • On auto-upstream and auto-downstream ports: – If a configuration source is elected, the ports send an application priority TLV based on the application priority TLV received on the configuration-source port.
Propagation of DCB Information When an auto-upstream or auto-downstream port receives a DCB configuration from a peer, the port acts as a DCBx client and checks if a DCBx configuration source exists on the switch. • If a configuration source is found, the received configuration is checked against the currently configured values that are internally propagated by the configuration source.
Figure 34. DCBx Sample Topology DCBx Prerequisites and Restrictions The following prerequisites and restrictions apply when you configure DCBx operation on a port: • For DCBx, on a port interface, enable LLDP in both Send (TX) and Receive (RX) mode (the protocol lldp mode command; refer to the example in CONFIGURATION versus INTERFACE Configurations in the Link Layer Discovery Protocol (LLDP) chapter). If multiple DCBx peer ports are detected on a local DCBx interface, LLDP is shut down.
• cee: configures the port to use CEE (Intel 1.01). • cin: configures the port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.5: configures the port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. 4. Configure the DCBx port role the interface uses to exchange DCB information. PROTOCOL LLDP mode [no] DCBx port-role {config-source | auto-downstream | auto-upstream | manual} • auto-upstream: configures the port to receive a peer configuration.
Configuring DCBx Globally on the Switch To globally configure the DCBx operation on a switch, follow these steps. 1. Enter Global Configuration mode. EXEC PRIVILEGE mode configure 2. Enter LLDP Configuration mode to enable DCBx operation. CONFIGURATION mode [no] protocol lldp 3. Configure the DCBx version used on all interfaces not already configured to exchange DCB information. PROTOCOL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.
[no] fcoe priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x8. 7. Configure the iSCSI priority advertised for the iSCSI protocol in Application Priority TLVs. PROTOCOL LLDP mode [no] iscsi priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x10. DCBx Error Messages The following syslog messages appear when an error in DCBx operation occurs.
Verifying the DCB Configuration To display DCB configurations, use the following show commands. Table 19. Displaying DCB Configurations Command Output show qos dot1p-queue mapping Displays the current 802.1p priority-queue mapping. show dcb [linecard {all | unit-number}] [sfm {all | unit-number}] Displays the data center bridging status, number of PFC-enabled ports, and number of PFC-enabled queues. You can optionally specify the linecard or SFM number.
priority-list 4 set-pgid 2 The following example shows the output of the show qos dcb-map test command. Dell#show qos dcb-map test ----------------------State :Complete PfcMode:ON -------------------PG:0 TSA:ETS BW:50 PFC:OFF Priorities:0 1 2 5 6 7 PG:1 TSA:ETS BW:50 Priorities:3 4 PFC:ON The following example shows the show interfaces pfc summary command. The following table describes the show interface pfc summary command fields. Table 20.
Fields Description PFC Link Delay Link delay (in quanta) used to pause specified priority traffic. Application Priority TLV: FCOE TLV Tx Status Status of FCoE advertisements in application priority TLVs from local DCBx port: enabled or disabled. Application Priority TLV: ISCSI TLV Tx Status Status of ISCSI advertisements in application priority TLVs from local DCBx port: enabled or disabled.
% Rate(Mbps) Burst(KB) Rate(Mpbs) Burst(KB) ---------------------------------------------------------------------------------0 0,1,2,4,5,6,7 50 400 100 4000 400 ETS 1 3 50 - - ETS 2 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - - - - Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is disabled 0 Input Conf TLV Pkts, 0 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0 Input Traffic Class TLV Pkts, 0 Output Traffic Class TLV Pkts, 0 Error Traffic Class TLV Pkts The following ta
Field Description Conf TLV Tx Status Status of ETS Configuration TLV advertisements: enabled or disabled. ETS TLV Statistic: Input Conf TLV pkts Number of ETS Configuration TLVs received. ETS TLV Statistic: Output Conf TLV pkts Number of ETS Configuration TLVs transmitted. ETS TLV Statistic: Error Conf TLV pkts Number of ETS Error Configuration TLVs received. The following example shows the show linecard 2 port-set 0 backplane all pfc details command.
-----------------------------------------------0 0,1,2,4,5,6,7 50 % ETS 1 3 50 % ETS 2 3 4 5 6 7 The following example shows the show interface DCBx detail command (IEEE). The following example shows the show interface DCBx detail command (legacy CEE). The following table describes the show interface DCBx detail command fields. Table 22. show interface DCBx detail Command Description Field Description Interface Interface type with chassis slot and port number.
Field Description Peer DCBx Status: Acknowledgment Number Acknowledgement number transmitted in Control TLVs received from peer device. Total DCBx Frames transmitted Number of DCBx frames sent from local port. Total DCBx Frames received Number of DCBx frames received from remote peer port. Total DCBx Frame errors Number of DCBx frames with errors received. Total DCBx Frames unrecognized Number of unrecognizable DCBx frames received.
CONFIGURATION mode dcb enable 2. Configure the shared PFC buffer size and the total buffer size. A maximum of 4 lossless queues are supported. CONFIGURATION mode dcb pfc-shared-buffer-size 2000 dcb pfc-total-buffer-size 5000 NOTE: For dcb pfc-shared-buffer-size, the range is from <0-11210> in KB (default LC=2496/SFM=3328) For dcb pfc-total-buffer-size, the range is from <0-11210> in KB(default LC=7488/SFM=7596) 3. Configure the number of PFC queues.
CONFIGURATION mode dcb pfc-shared-buffer-size buffer-size sfm all 12. Configuring global shared buffer size on linecards. CONFIGURATION mode dcb pfc-shared-buffer-size buffer-size linecard {linecard-number | all} [port-set {portpipe | all}] Sample DCB Configuration The following shows examples of using PFC and ETS to manage your data center traffic. In the following example: • Incoming SAN traffic is configured for priority-based flow control.
QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
13 Debugging and Diagnostics This chapter describes the debugging and diagnostics tasks that you can perform on the switch. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, they verify the identification registers of the components on the board.
When the tests complete, the system displays a syslog message. 00:13:17 : Diagnostic test results are stored on file: flash:/TestReport-LP-0.txt 00:13:19 : Diagnostic test results are stored on file: flash:/TestReport-LP-1.txt 00:13:20 : Diagnostic test results are stored on file: flash:/TestReport-LP-2.
00:10:30: %SYSTEM:CP %IFMGR-1-DEL_PORT: Removed port: Fo 2/0-44, 00:10:31: %SYSTEM:CP %CHMGR-2-UNIT_DOWN: CP unit down - CP unit offline Dell# show system brief System MAC : 74:86:7a:ff:70:74 Reload-Type : normal-reload [Next boot : normal-reload] -- Linecard Info -LinecardId Type Status ReqTyp CurTyp Version Ports --------------------------------------------------------------------------0 Linecard offline Z9500LC36 Z9500LC36 9.2(1.0B2) 144 1 Linecard offline Z9500LC48 Z9500LC48 9.2(1.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 drwx d---rwx -rwx -rwx drwx drwx -rwx drwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx drwx -rwx 4096 4096 3 91459902 6127 4096 4096 32 4096 96573311 40 5398 9716 4568 2690 6283 6479 6479 4096 21762 Apr Apr Mar Apr Mar Apr Apr Mar Apr Apr Apr Apr Apr Mar Mar Mar Mar Mar Mar Mar 13 13 06 13 06 13 13 06 13 13 30 20 22 06 06 06 06 06 06 06 2008 2008 2014 2008 2014 2008 2008 2014 2008 2008 2008 2008 2008 2014 2014 2014 2014 2014 2014 2014 14:26:18 14
+Fan tray[1] Sanity test PASS +Fan tray[2] Sanity test PASS +Fan tray[3] Sanity test PASS +Fan tray[4] Sanity test PASS fanTest ..................................................... PASS Starting test: fpgaTest ...... WARNING: FPGA Version must be at least 0x1a to access the status, boot status and device id registers fpgaTest .................................................... PASS i2cTest ..................................................... PASS macPhyRegTest ............................................
PSU[3] sensor[1] temperature 30.0 C PSU[3] sensor[2] temperature 21.0 C Ethernet MAC temperature 48.0 C temperatureTest ............................................. PASS Starting test: triumphAccessTest ...... + Access Test for unit 6 : PASSED triumphAccessTest ........................................... PASS triumphPllStatusTest ........................................ PASS Starting test: usbTest ...... -USB "/dev/rsd0d" is not plugged/mounted/formatted; test SKIPPED usbTest ..............................
Triumph port 11 to Fabric traffic test PASSED Triumph port 12 to Fabric traffic test PASSED triumphFabricTrafficTest .................................... PASS --------- Group Test Statistics --------Total : 26 Passed : 25 Failed : 1 Elapsed time : 00H:05M:21S Stop reason : after completion ------ Failed tests (level, times) ------ psuTest (0, 1) Sample Test Log for Line-Card CPU: TestReport-LP-0.txt Example of a Test Log for Line-Card CPU 0: TestReport-LP-0.txt Dell#show file flash://TestReport-LP-0.
Starting test: partyLinkStatusTest ...... WM0 Link Status UP partyLinkStatusTest ......................................... Starting test: portcardHiGigLinkStatusTest ...... + HG Link Status Test for Unit 0 (Portcard 0): PASSED + HG Link Status Test for Unit 1 (Portcard 1): PASSED + HG Link Status Test for Unit 2 (Portcard 2): PASSED portcardHiGigLinkStatusTest ................................. Starting test: portcardXELinkStatusTest ......
+ Access Test for BCM unit 2 : PASSED portcardBoardRevisionTest ................................... qsfpOpticsTest .............................................. qsfpPhyTest ................................................. rtcTest ..................................................... sataSsdTest ................................................. Starting test: temperatureTest ...... Thermal Monitor Diodes: Diode[0] temperature 33.9 C Diode[1] temperature 35.0 C Diode[2] temperature 35.
00:10:30: 00:10:30: 00:10:30: 00:10:30: 00:10:30: 00:10:30: 00:10:31: %SYSTEM:CP %SYSTEM:CP %SYSTEM:CP %SYSTEM:CP %SYSTEM:CP %SYSTEM:CP %SYSTEM:CP %CHMGR-2-UNIT_DOWN: linecard 1 down - linecard offline %IFMGR-5-OSTATE_DN: Changed interface state to down: Fo 1/0 %IFMGR-1-DEL_PORT: Removed port: Fo 1/0-44, %CHMGR-2-UNIT_DOWN: linecard 2 down - linecard offline %IFMGR-5-OSTATE_DN: Changed interface state to down: Fo 2/0 %IFMGR-1-DEL_PORT: Removed port: Fo 2/0-44, %CHMGR-2-UNIT_DOWN: CP unit down - CP unit of
Dell# dir Directory of flash: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 drwx drwx drwx drwx drwx d---rwx -rwx -rwx drwx drwx -rwx drwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx -rwx drwx -rwx 4096 2048 4096 4096 4096 4096 3 91459902 6127 4096 4096 32 4096 96573311 40 5398 9716 4568 2690 6283 6479 6479 4096 21762 Jan Mar Apr Apr Apr Apr Mar Apr Mar Apr Apr Mar Apr Apr Apr Apr Apr Mar Mar Mar Mar Mar Mar Mar 01 06 13 13 13 13 06 13 06 13 13 06 13 13 30 20 22 06 06 06 06 06 06 06 1980 2
Fabric Board 0 Version = 0x1 Fabric Board 1 Version = 0x1 fabricBoardRevisionTest ..................................... PASS fabricIdTest ................................................ PASS fabricPllStatusTest ......................................... PASS Starting test: fanTest ...... +Fan tray[0] Sanity test PASS +Fan tray[1] Sanity test PASS +Fan tray[2] Sanity test PASS +Fan tray[3] Sanity test PASS +Fan tray[4] Sanity test PASS fanTest .....................................................
PSU[1] sensor[0] temperature 32.0 C PSU[1] sensor[1] temperature 29.0 C PSU[1] sensor[2] temperature 23.0 C PSU[2] sensor[0] temperature 33.0 C PSU[2] sensor[1] temperature 30.0 C PSU[2] sensor[2] temperature 23.0 C PSU[3] sensor[0] temperature 38.0 C PSU[3] sensor[1] temperature 30.0 C PSU[3] sensor[2] temperature 21.0 C Ethernet MAC temperature 48.0 C temperatureTest ............................................. PASS Starting test: triumphAccessTest ......
LEVEL 2 DIAGNOSTIC Starting test: triumphFabricTrafficTest ...... Triumph port 7 to Fabric traffic test PASSED Triumph port 8 to Fabric traffic test PASSED Triumph port 9 to Fabric traffic test PASSED Triumph port 10 to Fabric traffic test PASSED Triumph port 11 to Fabric traffic test PASSED Triumph port 12 to Fabric traffic test PASSED triumphFabricTrafficTest ....................................
LEVEL 1 DIAGNOSTIC eepromTest .................................................. i2cTest ..................................................... macPhyRegTest ............................................... Starting test: partyLinkStatusTest ...... WM0 Link Status UP partyLinkStatusTest ......................................... Starting test: portcardHiGigLinkStatusTest ......
pcieScanTest ................................................ portcardBcmIdTest ........................................... Starting test: portcardBoardRevisionTest ...... + Access Test for BCM unit 0 : PASSED + Access Test for BCM unit 1 : PASSED + Access Test for BCM unit 2 : PASSED portcardBoardRevisionTest ................................... qsfpOpticsTest .............................................. qsfpPhyTest ................................................. rtcTest ................................
TRACE Logs In addition to the syslog buffer, to report hardware and software events and status information, Dell Networking OS buffers trace messages which are continuously written by various Dell Networking OS software tasks. Each TRACE message provides the date, time, and name of the Dell Networking OS process. All messages are stored in a ring buffer that you can save to a file either manually or automatically after failover.
• View the modular packet buffers details per unit and the mode of allocation. show hardware stack-unit {0-11} buffer unit {0-1} total-buffer • Display buffer statistics for a specific interface. show hardware buffer interface interface{priority-group { id | all } | queue { id| all} ] buffer-info • Display buffer statistics tracking resource information for a specific interface.
Internal Unit Port Number User Ports from User Ports from User Ports from User Ports from No User Ports 0 to 31 on Unit 0 32 to 63 on Unit 64 to 95 on Unit 96 to 127 on on Unit 4 1 2 Unit 3 No User Ports on Unit 5 9 8 40 72 104 Internal Internal 10 9 41 73 105 Internal Internal 11 10 42 74 106 Internal Internal 12 11 43 75 107 Internal Internal 13 12 44 76 108 Internal Internal 14 13 45 77 109 Internal Internal 15 14 46 78 110 Internal Internal 16 15 47
Environmental Monitoring Switch components use environmental monitoring hardware to detect transmit power readings, receive power readings, and temperature updates. Use the commands described in this section to: • • Monitor the status of hardware components: power supplies, fan trays, and transceivers. Recognize and troubleshoot over-temperature conditions. Display Power Supply Status To monitor the operational status of a power supply, use the show environment pem command.
-- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed -----------------------------------------------------------------------------------0 0 up up 5263 up 5292 0 1 up up 5274 up 5317 0 2 up up 5256 up 5292 0 3 up up 5278 up 5328 0 4 up up 5270 up 5320 Speed in RPM Display Transceiver Type To monitor the types of transceivers installed in switch ports, use the show inventory media command.
To display more diagnostic data when troubleshooting a transceiver, use the show interfaces tranceiver command. Additional information about QSFP temperature, voltage, and current alarm thresholds are displayed.
Over-temperature alarms are logged. Use the show alarms command to display the currently logged alarms. To display the pre-configured sensor thresholds, use the show alarms threshold command.
major over-temperature, or S for shutdown. Minor threshold crossings do not cause alarms, but are used to trigger increases in the speed of the system fans as needed to keep the component temperature within the desired range.
Troubleshooting Packet Loss The show hardware stack-unit commands are intended primarily to troubleshoot packet loss. • show hardware linecard cpu data-plane statistics • show hardware party-bus port {{0-7} | all} statistics • show hardware linecard {0-2} drops unit {0-3} port {1-104} • show hardware linecard {0-2} unit {0-3} {counters | details | port-stats [detail] | register | execute-shell-cmd | ipmc-replication | table-dump} • show hardware {layer2| layer3} {e.g.
4 0 8 0 12 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 28 0 32 0 36 0 40 0 44 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 Internal 0 5 0 9 0 13 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 29 0 33 0 37 0 41 0 45 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 0 0 0 0 0 0 41745 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Policy Discards Packets dropped by FP (L2+L3) Drops Port bitmap zero Drops Rx VLAN Drops --- Ingress MAC counters--Ingress FCSDrops Ingress MTUExceeds --- MMU Drops --Ingress MMU Drops HOL DROPS(TOTAL) HOL DROPS on COS0 HOL DROPS on COS1 HOL DROPS on COS2 HOL DROPS on COS3 HOL DROPS on COS4 HOL DROPS on COS5 HOL DROPS on COS6 HOL DROPS on COS7 HOL DROPS on COS8 HOL DROPS on COS9 HOL DROPS on COS10 HOL DROPS on COS11 HOL DROPS on COS12 HOL DROPS on COS13 HOL DROPS on COS14 HOL DROPS on COS15 HOL DROPS on COS
TR 1023 byte frames = 18 TR MAX Byte frames = 6202 TR MGV Frames = 0 Bytes Transmitted = 0 Frames Transmitted = 125183 Mcast Frames Transmitted = 0 Bcast Frames Transmitted = 4 Pause Frames Transmitted = 0 Deferred Transmits = 0 Excessive Deferred Transmits = 0 TX single collisions = 0 TX multiple collisions = 0 TX late collisions = 0 TX Excessive collisions = 0 TX total collisions = 0 TX Drops = 0 TX Jabber = 0 TX FCS errors = 0 TX Control frames = 0 TX oversize frames = 0 TX undersize frames = 0 TX fragme
Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx 128to255octets Packets = 441 256to511octets Packets = 3816 512to1023octets Packets = 3247 1024toMaxoctets Packets = 150599 Jabbers = 0 align errors = 0 fcs errors = 0 good octets = 251640594 Drop pkts = 0 Unicast Packets = 333370 Multicast Packets = 193621 Broadcast Packets = 45 Source Address Changes = 3 Fragments = 0 Jumbo Packets = 0 Symbol Errros = 0 In Range Errors = 0 OutofRange Errors = 0 Displaying Line Card Counters The show hardware linecard
HOL DROPS on COS1 : HOL DROPS on COS2 : HOL DROPS on COS3 : HOL DROPS on COS4 : HOL DROPS on COS5 : 0 0 0 0 0 Accessing Application Core Dumps Core dumps for an application crash are enabled by default. On the Z9500, core dumps are generated and stored in the local flash of the Z9500 Control Processor CPU.
Example of a Mini Core Text File VALID MAGIC ------------------------PANIC STRING ----------------panic string is : ----------------------STACK TRACE START--------------0035d60c : 00274f8c : 0024e2b0 : 0024dee8 : 0024d9c4 : 002522b0 : 0026a8d0 : 0026a00c : ------------------------STACK TRACE END------------------------------------------FREE MEMORY--------------uvmexp.
14 Dynamic Host Configuration Protocol (DHCP) DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network endstations (hosts) based on configuration policies determined by network administrators.
Option Number and Description Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS. IP Address Lease Time Option 51 DHCP Message Type Option 53 Specifies the amount of time that the client is allowed to use an assigned IP address.
Assign an IP Address using DHCP The following section describes DHCP and the client in a network. When a client joins a network: 1. The client initially broadcasts a DHCPDISCOVER message on the subnet to discover available DHCP servers. This message includes the parameters that the client requires and might include suggested values for those parameters. 2. Servers unicast or broadcast a DHCPOFFER message in response to the DHCPDISCOVER that offers to the client values for the requested parameters.
you configure IP source address validation on a member port of a virtual local area network (VLAN) and then to apply an access list to the VLAN, Dell Networking OS displays the first line in the following message. If you first apply an ACL to a VLAN and then enable IP source address validation on one of its member ports, Dell Networking OS displays the second line in the following message. % Error: Vlan member has access-list configured. % Error: Vlan has an access-list configured.
ip dhcp server 2. Create an address pool and give it a name. DHCP mode pool name 3. Specify the range of IP addresses from which the DHCP server may assign addresses. DHCP mode network network/prefix-length • network: the subnet address. • prefix-length: specifies the number of bits used for the network portion of the address you specify. The prefix-length range is from 17 to 31. 4. Display the current pool configuration.
The default is 24 hours. Specifying a Default Gateway The IP address of the default router should be on the same subnet as the client. To specify a default gateway, follow this step. • Specify default gateway(s) for the clients on the subnet, in order of preference. DHCP default-router address Configure a Method of Hostname Resolution Dell systems are capable of providing DHCP clients with parameters for two methods of hostname resolution—using DNS or NetBIOS WINS.
DHCP mode pool name 2. Specify the client IP address. DHCP host address 3. Specify the client hardware address. DHCP hardware-address hardware-address type • hardware-address: the client MAC address. • type: the protocol of the hardware platform. The default protocol is Ethernet. Debugging the DHCP Server To debug the DHCP server, use the following command. • Display debug information for DHCP server.
Figure 38. Configuring a Relay Agent To view the ip helper-address configuration for an interface, use the show ip interface command from EXEC privilege mode. Example of the show ip interface Command R1_E600#show ip int tengigabitethernet 1/3 TenGigabitEthernet 1/3 is up, line protocol is down Internet address is 10.11.0.1/24 Broadcast address is 10.11.0.255 Address determined by user input IP MTU is 1500 bytes Helper address is 192.168.0.1 192.168.0.
Configure the System to be a DHCP Client A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP server. Implement the DHCP client functionality as follows: • The switch can obtain a dynamically assigned IP address from a DHCP server. A start-up configuration is not received. Use bare metal provisioning (BMP) to receive configuration parameters (Dell Networking OS version and a configuration file). BMP is enabled as a factory-default setting on a switch.
DHCP Snooping A DHCP client can run on a switch simultaneously with the DHCP snooping feature as follows: • If you enable DHCP snooping globally on a switch and you enable a DHCP client on an interface, the trust port, source MAC address, and snooping table validations are not performed on the interface by DHCP snooping for packets destined to the DHCP client daemon. The following criteria determine packets destined for the DHCP client: – DHCP is enabled on the interface.
The relay agent strips Option 82 from DHCP responses before forwarding them to the client. To insert Option 82 into DHCP packets, follow this step. • Insert Option 82 into DHCP packets. CONFIGURATION mode ip dhcp relay information-option [trust-downstream] For routers between the relay agent and the DHCP server, enter the trust-downstream option. • Manually reset the remote ID for Option 82.
INTERFACE PORT EXTENDER mode ip dhcp snooping trust 3. Enable DHCP snooping on a VLAN. CONFIGURATION mode ip dhcp snooping vlan name Enabling IPv6 DHCP Snooping To enable IPv6 DHCP snooping, use the following commands. 1. Enable IPv6 DHCP snooping globally. CONFIGURATION mode ipv6 dhcp snooping 2. Specify ports connected to IPv6 DHCP servers as trusted. INTERFACE mode ipv6 dhcp snooping trust 3. Enable IPv6 DHCP snooping on a VLAN or range of VLANs.
clear ipv6 dhcp snooping binding Dell# clear ipv6 dhcp snooping? binding Clear the snooping binding database Displaying the Contents of the Binding Table To display the contents of the binding table, use the following command. • Display the contents of the binding table. EXEC Privilege mode show ip dhcp snooping Example of the show ip dhcp snooping Command View the DHCP snooping statistics with the show ip dhcp snooping command.
Debugging the IPv6 DHCP To debug the IPv6 DHCP, use the following command. • Display debug information for IPV6 DHCP. EXEC Privilege mode debug ipv6 dhcp IPv6 DHCP Snooping MAC-Address Verification Configure to enable verify source mac-address in the DHCP packet against the mac address stored in the snooping binding table. • Enable IPV6 DHCP snooping .
================================================================ 10.1.1.251 00:00:4d:57:f2:50 172800 D Vl 10 Te 1/2 10.1.1.252 00:00:4d:57:e6:f6 172800 D Vl 10 Te 1/1 10.1.1.253 00:00:4d:57:f8:e8 172740 D Vl 10 Te 1/3 10.1.1.254 00:00:4d:69:e8:f2 172740 D Vl 10 Te 1/5 Total number of Entries in the table : 4 Dynamic ARP Inspection Dynamic address resolution protocol (ARP) inspection prevents ARP spoofing by forwarding only ARP frames that have been validated against the DHCP binding table.
Configuring Dynamic ARP Inspection To enable dynamic ARP inspection, use the following commands. 1. Enable DHCP snooping. 2. Validate ARP frames against the DHCP snooping binding table. INTERFACE VLAN mode arp inspection Examples of Viewing the ARP Information To view entries in the ARP database, use the show arp inspection database command.
Source Address Validation Description IP+MAC Source Address Validation Verifies that the IP source address and MAC source address are a legitimate pair. Enabling IP Source Address Validation IP source address validation (SAV) prevents IP spoofing by forwarding only IP packets that have been validated against the DHCP binding table. A spoofed IP packet is one in which the IP source address is strategically chosen to disguise the attacker.
cam-acl l2acl 2. Save the running-config to the startup-config. EXEC Privilege mode copy running-config startup-config 3. Reload the system. EXEC Privilege reload 4. Do one of the following. • Enable IP+MAC SAV. INTERFACE mode ip dhcp source-address-validation ipmac • Enable IP+MAC SAV with VLAN option.
15 Equal Cost Multi-Path (ECMP) This chapter describes configuring ECMP. This chapter describes configuring ECMP. ECMP for Flow-Based Affinity ECMP for flow-based affinity includes link bundle monitoring. Enabling Deterministic ECMP Next Hop Deterministic ECMP next hop arranges all ECMPs in order before writing them into the content addressable memory (CAM). For example, suppose the RTM learns eight ECMPs in the order that the protocols and interfaces came up.
CONFIGURATION mode. hash-algorithm seed value [linecard slot-id] [port-set number] The range is from 0 to 4095. Link Bundle Monitoring Link bundle monitoring allows the system to monitor the use of multiple links for an uneven distribution. Monitoring linked ECMP bundles allows traffic distribution amounts in a link to be monitored for unfair distribution at any given time.
The range is from 1 to 64. 2. Add interfaces to the ECMP group bundle. CONFIGURATION ECMP-GROUP mode interface interface interface tengigabitethernet 1/1 interface port-channel 100 3. Enable monitoring for the bundle. CONFIGURATION ECMP-GROUP mode link-bundle-monitor enable Modifying the ECMP Group Threshold You can customize the threshold percentage for monitoring ECMP group bundles. To customize the ECMP group bundle threshold and to view the changes, use the following commands.
The RTAG7 hash scheme generates a hash that consists of the following two portions: • The first portion is primarily generated from packet headers to identify micro-flows in the traffic.
Flow-based Hashing for ECMP Flow-based hashing is one of RTAG7 hashing techniques to cater to ECMP routing in multi-tier networks. It addresses traffic polarization issues by ensuring proper flow distribution between ECMP members in the higher layers of a multi-tier network. It facilitates a dynamic hash function selection across different nodes in the network on a macro flow basis, by reducing route starvation and the unfair distribution of bandwidth between members.
3. Configuring different load-balancing parameters at each tier. In Router A, the hash fields for load balancing could be source-ip, dest-ip, vlan, protocol, L4-source-port and L4-dest-port, whereas on Router B, the hash fields use only source-ip, dest-ip, and protocol 4. Configuring different hash algorithms at different tiers. For example, Router A could use crc16 as the hash algorithm while router B can use XOR16 as the hash algorithm.
Figure 40. After Polarization Effect Traffic flow after enabling flow-based hashing When the flow-based hashing is enabled at all the nodes in the multi-tier network, traffic distribution is balanced at all tiers of the network nullifying the polarization effect. Traffic occurs by the randomness for the flow-based hashing algorithm across multiple nodes in a given network.
To verify ECMP support for IPv6 /128 route prefixes stored in the host table, use the show ipv6 cam command. The command output includes the ECMP field with IPv6 neighbor addresses. 1 indicates ECMP handling of destination routes.
16 FCoE Transit The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces orZ9500 switch.. Fibre Channel over Ethernet FCoE provides a converged Ethernet network that allows the combination of storage-area network (SAN) and LAN traffic on a Layer 2 link by encapsulating Fibre Channel data into Ethernet frames.
Table 26. FIP Functions FIP Function Description FIP VLAN discovery FCoE devices (ENodes) discover the FCoE VLANs on which to transmit and receive FIP and FCoE traffic. FIP discovery FCoE end-devices and FCFs are automatically discovered. Initialization FCoE devices learn ENodes from the FLOGI and FDISC to allow immediate login and create a virtual link with an FCoE switch. Maintenance A valid virtual link between an FCoE device and an FCoE switch is maintained and the LOGO functions properly.
Dynamic ACL generation on the switch operating as a FIP snooping bridge function as follows: Port-based ACLs These ACLs are applied on all three port modes: on ports directly connected to an FCF, server-facing ENode ports, and bridge-to-bridge links. Port-based ACLs take precedence over global ACLs. FCoE-generated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames.
• Perform FIP snooping (allowing and parsing FIP frames) globally on all VLANs or on a per-VLAN basis. • To assign a MAC address to an FCoE end-device (server ENode or storage device) after a server successfully logs in, set the FCoE MAC address prefix (FC-MAP) value an FCF uses. The FC-MAP value is used in the ACLs installed in bridge-to-bridge links on the switch.
– ACLs are not installed, FIP and FCoE traffic is not blocked, and FIP packets are not processed. – The existing per-VLAN and FIP snooping configuration is stored. The configuration is re-applied the next time you enable the FIP snooping feature. • You must apply the CAM-ACL space for the FCoE region before enabling the FIP-Snooping feature. If you do not apply CAMACL space, the following error message is displayed: Dell(conf)#feature fip-snooping % Error: Cannot enable fip snooping.
• You must configure at least one interface for FCF (FCoE Forwarder) mode on a FIP snooping-enabled VLAN. You can configure multiple FCF trusted interfaces in a VLAN. • A maximum of eight VLANS are supported for FIP snooping on the switch. When enabled globally, FIP snooping processes FIP packets in traffic only from the first eight incoming VLANs. When enabled on a per-VLAN basis, FIP snooping is supported on up to eight VLANs.
FIP Snooping Restrictions The following restrictions apply when you configure FIP snooping. • The maximum number of FCoE VLANs supported on the switch is eight. • The maximum number of FIP snooping sessions supported per ENode server is 32. To increase the maximum number of sessions to 64, use the fip-snooping max-sessions-per-enodemac command. • The maximum number of FCFs supported per FIP snooping-enabled VLAN is twelve.
FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 43. Configuration Example: FIP Snooping on a Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
Example of Configuring the ENode Server-Facing Port NOTE: A port is enabled by default for bridge-ENode links. Example of Configuring the FCF-Facing Port Example of Configuring FIP Snooping Ports as Tagged Members of the FCoE VLAN After FIP packets are exchanged between the ENode and the switch, a FIP snooping session is established. ACLs are dynamically generated for FIP snooping on the FIP snooping bridge/switch.
Table 29. show fip-snooping sessions Command Description Field Description ENode MAC MAC address of the ENode . ENode Interface Slot/port number of the interface connected to the ENode. FCF MAC MAC address of the FCF. FCF Interface Slot/port number of the interface to which the FCF is connected. VLAN VLAN ID number used by the session. FCoE MAC MAC address of the FCoE session assigned by the FCF. FC-ID Fibre Channel ID assigned by the FCF. Port WWPN Worldwide port name of the CNA port.
Table 31. show fip-snooping fcf Command Description Field Description FCF MAC MAC address of the FCF. FCF Interface Slot/port number of the interface to which the FCF is connected. VLAN VLAN ID number used by the session. FC-MAP FC-Map value advertised by the FCF. ENode Interface Slot/port number of the interface connected to the ENode. FKA_ADV_PERIOD Period of time (in milliseconds) during which FIP keep-alive advertisements are transmitted.
Field Description Number of FLOGI Number of FIP-snooped FLOGI request frames received on the interface. Number of FDISC Number of FIP-snooped FDISC request frames received on the interface. Number of FLOGO Number of FIP-snooped FLOGO frames received on the interface. Number of ENode Keep Alives Number of FIP-snooped ENode keep-alive frames received on the interface. Number of VN Port Keep Alives Number of FIP-snooped VN port keep-alive frames received on the interface.
17 FIPS Cryptography Federal information processing standard (FIPS) cryptography provides cryptographic algorithms conforming to various FIPS standards published by the National Institute of Standards and Technology (NIST), a non-regulatory agency of the US Department of Commerce. FIPS mode is also validated for numerous platforms to meet the FIPS-140-2 standard for a software-based cryptographic module. This chapter describes how to enable FIPS cryptography requirements on Dell Networking platforms.
• All open SSH and Telnet sessions, as well as all SCP and FTP file transfers, are closed. • Any existing host keys (both RSA and RSA1) are deleted from system memory and NVRAM storage. • FIPS mode is enabled. – If you enable the SSH server when you enter the fips mode enable command, it is re-enabled for version 2 only. – If you re-enable the SSH server, a new RSA host key-pair is generated automatically. You can also manually create this keypair using the crypto key generate command.
Next Boot Required Type Current Type Master priority Hardware Rev Num Ports Up Time Dell Networking Jumbo Capable POE Capable FIPS Mode Burned In MAC No Of MACs ... : online : S4810 - 52-port GE/TE/FG (SE) : S4810 - 52-port GE/TE/FG (SE) : 0 : 3.0 : 64 : 7 hr, 3 min OS Version : 4810-8-3-7-1061 : yes : no : enabled : 00:01:e8:8a:ff:0c : 3 The following example shows the show system command on the Z9500.
Date Code Country Code Piece Part ID PPID Revision Service Tag Expr Svc Code Auto Reboot Last Restart Burned In MAC No Of MACs : : : : : : : : : : N/A N/A N/A N/A disabled powered-on 74:86:7a:ff:71:8c 3 -- Linecard 1 -Unit Type : Linecard Status : online Next Boot : online Required Type : Z9500LC12 - 12-port TE/FG (ZC) Hardware Rev : 1.0 Num Ports : 48 Up Time : 2 min, 8 sec Dell Networking OS Version : 1-0(0-4072) Jumbo Capable : yes Boot Flash : 3.2.1.0 Boot Selector : 3.2.0.
0 0 0 1 2 3 up up up Total power: UNKNOWN up UNKNOWN up UNKNOWN up 3504 3440 3440 0.0 0.0 0.0 0.0 W -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed -----------------------------------------------------------------------------------0 0 absent 0 1 absent 0 2 absent 0 3 absent 0 4 absent Speed in RPM Current BootSelector-Boot: Backup BIOS Disabling FIPS Mode When you disable FIPS mode, the following changes occur: • The SSH server disables.
18 Flex Hash This chapter describes the Flex Hash enhancements. Flex Hash Capability Overview The flex hash functionality enables you to configure a packet search key and matches packets based on the search key. When a packet matches the search key, two 16-bit hash fields are extracted from the start of the L4 header and provided as inputs (bins 2 and 3) for RTAG7 hash computation. You must specify the offset of hash fields from the start of the L4 header, which contains a flow identification field.
Dell(conf)# load-balance flexhash ipv4/ipv6 ip-proto offset1 [offset2 ] To delete the configured flex hash setting, use the no version of the command. RDMA Over Converged Ethernet (RoCE) Overview This functionality is supported on the Z9500 platform. RDMA is a technology that a virtual machine (VM) uses to directly transfer information to the memory of another VM, thus enabling VMs to be connected to storage networks.
into multiple, different sub-VLANs, each VLAN is denoted by a unique 8021.Q tag to enable the nodes that receive the traffic frames determine the VLAN for which the frames are destined. Typically, a Layer 3 physical interface processes only untagged or priority-tagged packets. Tagged packets that are received on Layer 3 physical interfaces are dropped.
19 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) and may require 4 to 5 seconds to reconverge.
Ring Checking At specified intervals, the Master node sends a ring health frame (RHF) through the ring. If the ring is complete, the frame is received on its secondary port and the Master node resets its fail-period timer and continues normal operation. If the Master node does not receive the RHF before the fail-period timer expires (a configurable timer), the Master node moves from the Normal state to the Ring-Fault state and unblocks its Secondary port.
Figure 44. Example of Multiple Rings Connected by Single Switch Important FRRP Points FRRP provides a convergence time that can generally range between 150ms and 1500ms for Layer 2 networks. The Master node originates a high-speed frame that circulates around the ring. This frame, appropriately, sets up or breaks down the ring. • The Master node transmits ring status check frames at specified intervals. • You can run multiple physical rings on the same switch.
Important FRRP Concepts The following table lists some important FRRP concepts. Concept Explanation Ring ID Each ring has a unique 8-bit ring ID through which the ring is identified (for example, FRRP 101 and FRRP 202, as shown in the illustration in Member VLAN Spanning Two Rings Connected by One Switch. Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose.
Implementing FRRP • FRRP is media and speed independent. • FRRP is a Dell proprietary protocol that does not interoperate with any other vendor. • You must disable the spanning tree protocol (STP) on both the Primary and Secondary interfaces before you can enable FRRP. • All ring ports must be Layer 2 ports. This is required for both Master and Transit nodes. • A VLAN configured as a control VLAN for a ring cannot be configured as a control or member VLAN for any other ring.
• Tag control VLAN ports. • All ports on the ring must use the same VLAN ID for the control VLAN. • You cannot configure a VLAN as both a control VLAN and member VLAN on the same ring. • Only two interfaces can be members of a control VLAN (the Master Primary and Secondary ports). • Member VLANs across multiple rings are not supported in Master nodes. To create the control VLAN for this FRRP group, use the following commands on the switch that is to act as the Master node. 1.
Configuring and Adding the Member VLANs Control and member VLANS are configured normally for Layer 2. Their status as Control or Member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to the Layer 2 chapter. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • Tag control VLAN ports. Member VLAN ports, except the Primary/Secondary interface, can be tagged or untagged.
no disable Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode. timer {hello-interval|dead-interval} milliseconds – Hello-Interval: the range is from 50 to 2000, in increments of 50 (default is 500). – Dead-Interval: the range is from 50 to 6000, in increments of 50 (default is 1500).
Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • • • • • Each Control Ring must use a unique VLAN ID. Only two interfaces on a switch can be Members of the same control VLAN. There can be only one Master node for any FRRP group. You can configure FRRP on Layer 2 interfaces only. Spanning Tree (if you enable it globally) must be disabled on both Primary and Secondary interfaces when you enable FRRP.
no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 2/14,31 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 2/14 secondary TenGigabitEthernet 2/31 control-vlan 101 member-vlan 201 mode transit no disable Example of R3 TRANSIT interface TenGigabitEthernet 3/14 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown ! interface Vlan 20
20 GARP VLAN Registration Protocol (GVRP) The generic attribute registration protocol (GARP) VLAN registration protocol (GVRP), defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and de-register attribute values, such as VLAN IDs, with each other.
Figure 45. Global GVRP Configuration Example Basic GVRP configuration is a two-step process: 1. Enabling GVRP Globally 2. Enabling GVRP on a Layer 2 Interface Related Configuration Tasks • • Configure GVRP Registration Configure a GARP Timer Enabling GVRP Globally To configure GVRP globally, use the following command. • Enable GVRP for the entire switch.
no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command. • Enable GVRP on a Layer 2 interface.
Configure a GARP Timer Set GARP timers to the same values on all devices that are exchanging information using GVRP. There are three GARP timer settings. • Join — A GARP device reliably transmits Join messages to other devices by sending each Join message two times. To define the interval between the two sending operations of each Join message, use this parameter. The Dell Networking OS default is 200ms.
21 Internet Group Management Protocol (IGMP) Internet group management protocol (IGMP) is a Layer 3 multicast protocol that hosts use to join or leave a multicast group. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. Multicast routing protocols (such as protocol-independent multicast [PIM]) use the information in IGMP messages to discover which groups are active and to populate the multicast routing table.
Figure 46. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group. 1. One router on a subnet is elected as the querier. The querier periodically multicasts (to all-multicast-systems address 224.0.0.1) a general query to all hosts on the subnet. 2.
• To enable filtering, routers must keep track of more state information, that is, the list of sources that must be filtered. An additional query type, the Group-and-Source-Specific Query, keeps track of state changes, while the Group-Specific and General queries still refresh the existing state.
3. The host’s third message indicates that it is only interested in traffic from sources 10.11.1.1 and 10.11.1.2. Because this request again prevents all other sources from reaching the subnet, the router sends another group-and-source query so that it can satisfy all other hosts. There are no other interested hosts so the request is recorded. Figure 49.
Figure 50. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command. • View IGMP-enabled interfaces. EXEC Privilege mode show ip igmp interface Example of the show ip igmp interface Command Dell#show ip igmp interface TenGigabitEthernet 3/10 Inbound IGMP access group is not set Internet address is 165.87.34.
EXEC Privilege mode show ip igmp groups Example of the show ip igmp groups Command Dell# show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface 225.1.1.1 TenGigabitEthernet 1/1 225.1.2.1 TenGigabitEthernet 1/1 Mode IGMPV2 IGMPV2 Uptime 00:11:19 00:10:19 Expires 00:01:50 00:01:50 Last Reporter 165.87.34.100 165.87.31.100 Adjusting Timers The following sections describe viewing and adjusting timers.
Adjusting the IGMP Querier Timeout Value If there is more than one multicast router on a subnet, only one is elected to be the querier, which is the router that sends queries to the subnet. 1. Routers send queries to the all multicast systems address, 224.0.0.1. Initially, all routers send queries. 2. When a router receives a query, it compares the IP address of the interface on which it was received with the source IP address given in the query.
IGMP Snooping IGMP snooping enables switches to use information in IGMP packets to generate a forwarding table that associates ports with multicast groups so that when they receive multicast frames, they can forward them only to interested receivers. Multicast packets are addressed with multicast MAC addresses, which represent a group of devices, rather than one unique device.
INTERFACE VLAN mode ip igmp fast-leave • View the configuration. INTERFACE VLAN mode show config Example of Configuration Output After Removing a Group-Port Association Dell(conf-if-vl-100)#show config ! interface Vlan 100 no ip address ip igmp snooping fast-leave shutdown Dell(conf-if-vl-100)# Disabling Multicast Flooding If the switch receives a multicast packet that has an IP address of a group it has not learned (unregistered frame), the switch floods that packet out of all ports on the VLAN.
When enabled, IGMP snooping querier starts after one query interval in case no IGMP general query (with IP SA lower than its VLAN IP address) is received on any of its VLAN members. Adjusting the Last Member Query Interval To adjust the last member query interval, use the following command. When the querier receives a Leave message from a receiver, it sends a group-specific query out of the ports specified in the forwarding table. If no response is received, it sends another.
22 Interfaces This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • The system supports 10 Gigabit Ethernet and 40 Gigabit Ethernet interfaces. NOTE: Only Dell-qualified optics are supported on these interfaces. Non-Dell optics are set to error-disabled state by default.
Figure 51. Port Numbering Interface Types The following table describes different interface types. Table 33.
NOTE: The CLI output may be incorrectly displayed as 0 (zero) for the Rx/Tx power values. To obtain the correct power information, perform a simple network management protocol (SNMP) query. Examples of the show Commands The following example shows the configuration and status information for one interface.
no ip address shutdown ! interface TenGigabitEthernet 2/7 no ip address shutdown ! interface TenGigabitEthernet 2/8 no ip address shutdown ! interface TenGigabitEthernet 2/9 no ip address shutdown Resetting an Interface to its Factory Default State You can reset the configurations applied on an interface to its factory default state. To reset the configuration, perform the following steps: 1. View the configurations applied on an interface.
interface interface • • 2. For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Enable the interface. INTERFACE mode no shutdown To confirm that the interface is enabled, use the show config command in INTERFACE mode. To leave INTERFACE mode, use the exit command or end command. You cannot delete a physical interface.
• Overview of Layer Modes • Configuring Layer 2 (Data Link) Mode • Configuring Layer 2 (Interface) Mode • Management Interfaces • Auto-Negotiation on Ethernet Interfaces • Clearing Interface Counters Overview of Layer Modes On all systems running Dell Networking OS, you can place physical interfaces, port channels, and VLANs in Layer 2 mode or Layer 3 mode. By default, VLANs are in Layer 2 mode. Table 34.
• Enable the interface. INTERFACE mode • no shutdown Place the interface in Layer 2 (switching) mode. INTERFACE mode switchport To view the interfaces in Layer 2 mode, use the show interfaces switchport command in EXEC mode. Configuring Layer 3 (Network) Mode When you assign an IP address to a physical interface, you place it in Layer 3 mode. To enable Layer 3 mode on an individual interface, use the following commands.
Add the keyword secondary if the IP address is the interface’s backup IP address. Example of the show ip interface Command You can only configure one primary IP address per interface. You can configure up to 255 secondary IP addresses on a single interface. To view all interfaces to see with an IP address assigned, use the show ip interfaces brief command in EXEC mode as shown in View Basic Interface Information.
NOTE: If you configure SNMP as the management application for EIS and you add a default management route, when you perform an SNMP walk and check the debugging logs for the source and destination IPs, the SNMP agent uses the destination address of incoming SNMP packets as the source address for outgoing SNMP responses for security. Management Interfaces The system supports the Management Ethernet interface as well as the standard interface on any port. You can use either method to connect to the system.
MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 1000 Mbit, Mode full duplex ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:06:14 Queueing strategy: fifo Input 791 packets, 62913 bytes, 775 multicast Received 0 errors, 0 discarded Output 21 packets, 3300 bytes, 20 multicast Output 0 errors, 0 invalid protocol Time since last interface status change: 00:06:03 If there are two RPMs on the system, configure each Management interface with a different IP address.
Example of the show interface and show ip route Commands To display the configuration for a given port, use the show interface command in EXEC Privilege mode, as shown in the following example. To display the routing table, use the show ip route command in EXEC Privilege mode.
! tagged TenGigabitEthernet 5/1 ip ospf authentication-key force10 ip ospf cost 1 ip ospf dead-interval 60 ip ospf hello-interval 15 no shutdown Loopback Interfaces A Loopback interface is a virtual interface in which the software emulates an interface. Packets routed to it are processed locally. Because this interface is not a physical interface, you can configure routing protocols on this interface to provide protocol stability. You can place Loopback interfaces in default Layer 3 mode.
Port Channel Definition and Standards Link aggregation is defined by IEEE 802.3ad as a method of grouping multiple physical interfaces into a single logical interface—a link aggregation group (LAG) or port channel. A LAG is “a group of links that appear to a MAC client as if they were a single link” according to IEEE 802.3ad. In Dell Networking OS, a LAG is referred to as a port channel interface. A port channel provides redundancy by aggregating physical interfaces into one logical interface.
channel. If the other interfaces configured in that port channel are configured with a different speed, Dell Networking OS disables them. Configuration Tasks for Port Channel Interfaces To configure a port channel (LAG), use the commands similar to those found in physical interfaces. By default, no port channels are configured in the startup configuration.
NOTE: The system supports jumbo frames by default (the default maximum transmission unit (MTU) is 9216 bytes). To configure the MTU, use the mtu command from INTERFACE mode. To view the interface’s configuration, enter INTERFACE mode for that interface and use the show config command or from EXEC Privilege mode, use the show running-config interface interface command. When an interface is added to a port channel, Dell Networking OS recalculates the hash algorithm.
Dell> When more than one interface is added to a Layer 2-port channel, Dell Networking OS selects one of the active interfaces in the port channel to be the primary port. The primary port replies to flooding and sends protocol data units (PDUs). An asterisk in the show interfaces port-channel brief command indicates the primary port. As soon as a physical interface is added to a port channel, the properties of the port channel determine the properties of the physical interface.
shutdown Dell(conf-if-po-3)# Configuring the Minimum Oper Up Links in a Port Channel You can configure the minimum links in a port channel (LAG) that must be in “oper up” status to consider the port channel to be in “oper up” status. To set the “oper up” status of your links, use the following command. • Enter the number of links in a LAG that must be in “oper up” status. INTERFACE mode minimum-links number The default is 1.
Dell(conf-if)#vlan tagged 2,3-4 2. Use the switchport command in INTERFACE mode to enable Layer 2 data transmissions through an individual interface INTERFACE mode Dell(conf-if)#switchport 3. Verify the manually configured VLAN membership (show interfaces switchport interface command).
Packet based hashing is used to load balance traffic across a port-channel based on the IP Identifier field within the packet. Load balancing uses source and destination packet information to get the greatest advantage of resources by distributing traffic over multiple paths when transferring data to a destination. Dell Networking OS allows you to modify the hashing algorithms used for flows and for fragments.
The show range command is available under Interface Range mode. This command allows you to display all interfaces that have been validated under the interface range context. The show configuration command is also available under Interface Range mode. This command allows you to display the running configuration only for interfaces that are part of interface range. You can avoid specifying spaces between the range of interfaces, separated by commas, that you configure by using the interface range command.
Overlap Port Ranges The following is an example showing how the interface-range prompt extends a port range from the smallest start port number to the largest end port number when port ranges overlap. handles overlapping port ranges.
interface range macro name Example of Using a Macro to Change the Interface Range Configuration Mode The following example shows how to change to the interface-range configuration mode using the interface-range macro named “test.” Dell(config)# interface range macro test Dell(config-if)# Monitoring and Maintaining Interfaces Monitor interface statistics with the monitor interface command.
m l T q - Change mode Page up Increase refresh interval Quit c - Clear screen a - Page down t - Decrease refresh interval q Dell# Displaying Traffic Statistics on HiGig Ports You can verify the buffer usage and queue counters for high-Gigabit Ethernet (HiGig) ports and link bundles (port channels). The buffer counters supported for front-end ports are extended to HiGig backplane ports.
• Line-card slot 0 uses three NPUs numbered 0 to 2. • Line-card slot 1 uses four NPUs numbered 0 to 3. • Line-card slot 2 uses four NPUs numbered 0 to 3. SFM NPUs are numbered 0 to 5. Line-card and SFM NPUs use HiGig link bundles to transmit data. • An SFM (spine) NPU uses 11 HiGig link bundles, one link bundle to transmit data to each line-card (leaf) NPU. Each HiGig link bundle in an SFM NPU consists of two HiGig links.
Alarms are generated only when link-bundle traffic levels are high. At low traffic levels, only one or two significant flows may cause unevenness. However, uneven traffic distribution across links during low-traffic periods is not critical and does not trigger an alarm. • You can enable SNMP traps and syslog messages to be generated when an uneven traffic distribution is detected in a HiGig link bundle.
By adding this feature, the number of reloads are reduced and traffic disruption is only seen in fanned out or fanned in ports. • When a non-supported profile release is upgraded to a supported profile release, the fan-out configured ports get automatically included in the profile. In fan-out mode, if a system is upgraded with 25 or 26 ports, only 24 ports get upgraded to fan-out mode. The rest of the ports put to default 40G mode. • In stacking, configure profile first before provisioning for new units.
Similarly, you can enable the fan-out mode to configure the QSFP port on a device to act as an SFP or SFP+ port. As the QSA enables a QSFP or QSFP+ port to be used as an SFP or SFP+ port, Dell Networking OS does not immediately detect the QSA after you insert it into a QSFP port cage. After you insert an SFP or SFP+ cable into a QSA connected to a 40 Gigabit port, Dell Networking OS assumes that all the four fanned-out 10 Gigabit ports have plugged-in SFP or SFP+ optical cables.
NOTE: In the following show interfaces tengigbitethernet commands, the ports 1,2, and 3 are inactive and no physical SFP or SFP+ connection actually exists on these ports. However, Dell Networking OS still perceives these ports as valid and the output shows that pluggable media (optical cables) is inserted into these ports. This is a software limitation for this release. Link Dampening Interface state changes occur when interfaces are administratively brought up or down or if an interface state changes.
To view a dampening summary for the entire system, use the show interfaces dampening summary command from EXEC Privilege mode. Dell# show interfaces dampening summary 20 interfaces are configured with dampening. 3 interfaces are currently suppressed. Following interfaces are currently suppressed: Te 1/2 Te 3/1 Te 4/2 Dell# Clearing Dampening Counters To clear dampening counters and accumulated penalties, use the following command. • Clear dampening counters.
An Ethernet interface starts to send pause frames to a sending device when the transmission rate of ingress traffic exceeds the egress port speed. The interface stops sending pause frames when the ingress rate falls to less than or equal to egress port speed. The globally assigned 48-bit Multicast address 01-80-C2-00-00-01 is used to send and receive pause frames.
* Number of flow-control packet pointers: the range is from 1 to 2047 (default = 75). * Flow-control buffer threshold in KB: the range is from 1 to 2013 (default = 49KB). * Flow-control discard threshold in KB: the range is from 1 to 2013 (default= 75KB) Configure the MTU Size on an Interface If a packet includes a Layer 2 header, the difference in bytes between the link MTU and IP MTU must be enough to include the Layer 2 header.
NOTE: As a best practice, Dell Networking recommends keeping auto-negotiation enabled. Only disable auto-negotiation on switch ports that attach to devices not capable of supporting negotiation or where connectivity issues arise from interoperability issues. For 10/100/1000 Ethernet interfaces, the negotiation auto command is tied to the speed command. Auto-negotiation is always enabled when the speed command is set to 1000 or auto.
Vlan 2 Name: TengigabitEthernet 13/1 802.1QTagged: True Vlan membership: Vlan 2 Name: TengigabitEthernet 13/2 802.1QTagged: True Vlan membership: Vlan 2 Name: TengigabitEthernet 13/3 802.1QTagged: True Vlan membership: Vlan 2 --More-- Configuring the Interface Sampling Size Although you can enter any value between 30 and 299 seconds (the default), software polling is done once every 15 seconds. So, for example, if you enter “19”, you actually get a sample of the past 15 seconds.
Internet address is not set MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 10000 Mbit ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 1d23h45m Queueing strategy: fifo 0 packets input, 0 bytes Input 0 IP Packets, 0 Vlans 0 MPLS 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts Received 0 input symbol errors, 0 runts, 0 giants, 0 throttles 0 CRC, 0 IP Checksum, 0 overrun, 0 discarded 0 packets output, 0 byte
– For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For the Management interface on the stack-unit, enter the keyword ManagementEthernet then the slot/port information. – For a port channel interface, enter the keywords port-channel then a number. – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
23 Internet Protocol Security (IPSec) Internet protocol security (IPSec) is an end-to-end security scheme for protecting IP communications by authenticating and encrypting all packets in a communication session. Use IPSec between hosts, between gateways, or between hosts and gateways. IPSec is compatible with Telnet and FTP protocols. It supports two operational modes: Transport and Tunnel. • Transport mode — (default) Use to encrypt only the payload of the packet. Routing information is unchanged.
CONFIGURATION mode crypto ipsec policy myCryptoPolicy 10 ipsec-manual transform-set myXform-set session-key inbound esp 256 auth encrypt session-key outbound esp 257 auth encrypt match 0 tcp a::1 /128 0 a::2 /128 23 match 1 tcp a::1 /128 23 a::2 /128 0 match 2 tcp a::1 /128 0 a::2 /128 21 match 3 tcp a::1 /128 21 a::2 /128 0 match 4 tcp 1.1.1.1 /32 0 1.1.1.2 /32 23 match 5 tcp 1.1.1.1 /32 23 1.1.1.2 /32 0 match 6 tcp 1.1.1.1 /32 0 1.1.1.2 /32 21 match 7 tcp 1.1.1.1 /32 21 1.1.1.
24 IPv4 Routing The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS.
Assigning IP Addresses to an Interface Assign primary and secondary IP addresses to physical or logical (for example, [virtual local area network [VLAN] or port channel) interfaces to enable IP communication between the system and hosts connected to that interface. You can assign one primary address and up to 255 secondary IP addresses to each interface. 1. Enter the keyword interface then the type of interface and slot/port information. CONFIGURATION mode interface slot/port 2.
Use the following required and optional parameters: – ip-address: enter an address in dotted decimal format (A.B.C.D). – mask: enter a mask in slash prefix-length format (/X). – interface: enter an interface type then the slot/port information. – distance: the range is from 1 to 255. (optional) – permanent: keep the static route in the routing table (if you use the interface option) even if you disable the interface with the route. (optional) – tag tag-value: the range is from 1 to 4294967295.
management route ip-address mask {forwarding-router-address | ManagementEthernet slot/ port} Example of the show ip management-route Command To view the configured static routes for the management port, use the show ip management-route command in EXEC privilege mode. Dell#show ip management-route Destination ----------10.16.0.0/16 172.16.1.0/24 Gateway ------ManagementEthernet 1/1 10.16.151.
ks patch1 tomm-3 gxr f00-3 Dell> (perm, (perm, (perm, (perm, (perm, OK) OK) OK) OK) OK) - IP IP IP IP IP 2.2.2.2 192.68.69.2 192.68.99.2 192.71.18.2 192.71.23.1 To view the current configuration, use the show running-config resolve command. Specifying the Local System Domain and a List of Domains If you enter a partial domain, Dell Networking OS can search different domains to finish or fully qualify that partial domain.
Type Ctrl-C to abort. ---------------------------------------------------------------------Tracing the route to www.force10networks.com (10.11.84.18), 30 hops max, 40 byte packets ---------------------------------------------------------------------TTL Hostname Probe1 Probe2 Probe3 1 10.11.199.190 001.000 ms 001.000 ms 002.000 ms 2 gwegress-sjc-02.force10networks.com (10.11.30.126) 005.000 ms 001.000 ms 001.000 ms 3 fw-sjc-01.force10networks.com (10.11.127.254) 000.000 ms 000.000 ms 000.000 ms 4 www.dell.
Example of the show arp Command These entries do not age and can only be removed manually. To remove a static ARP entry, use the no arp ip-address command. To view the static entries in the ARP cache, use the show arp static command in EXEC privilege mode. Dell#show arp Protocol Address Age(min) Hardware Address Interface VLAN CPU -------------------------------------------------------------------------------Internet 10.1.2.
In the request, the host uses its own IP address in the Sender Protocol Address and Target Protocol Address fields. Enabling ARP Learning via Gratuitous ARP To enable ARP learning via gratuitous ARP, use the following command. • Enable ARP learning via gratuitous ARP. CONFIGURATION mode arp learn-enable ARP Learning via ARP Request In Dell Networking OS versions prior to 8.3.1.
Configuring ARP Retries You can configure the number of ARP retries. The default backoff interval remains at 20 seconds. To set and display ARP retries, use the following commands. • Set the number of ARP retries. CONFIGURATION mode arp retries number The default is 5. • The range is from 1 to 20. Set the exponential timer for resending unresolved ARPs. CONFIGURATION mode arp backoff-time The default is 30. • The range is from 1 to 3600. Display all ARP entries learned via gratuitous ARP.
To view if ICMP unreachable messages are sent on the interface, use the show config command in INTERFACE mode. If it is not listed in the show config command output, it is enabled. Only non-default information is displayed in the show config command output. UDP Helper User datagram protocol (UDP) helper allows you to direct the forwarding IP/UDP broadcast traffic by creating special broadcast addresses and rewriting the destination IP address of packets to match those addresses.
Address is 00:01:e8:0d:b9:7a, Current address is 00:01:e8:0d:b9:7a Interface index is 1107787876 Internet address is 1.1.0.1/24 IP UDP-Broadcast address is 1.1.255.
Figure 54. UDP Helper with Broadcast-All Addresses UDP Helper with Subnet Broadcast Addresses When the destination IP address of an incoming packet matches the subnet broadcast address of any interface, the system changes the address to the configured broadcast address and sends it to matching interface. In the following illustration, Packet 1 has the destination IP address 1.1.1.255, which matches the subnet broadcast address of VLAN 101.
Figure 56. UDP Helper with Configured Broadcast Addresses UDP Helper with No Configured Broadcast Addresses The following describes UDP helper with no broadcast addresses configured. • If the incoming packet has a broadcast destination IP address, the unaltered packet is routed to all Layer 3 interfaces. • If the Incoming packet has a destination IP address that matches the subnet broadcast address of any interface, the unaltered packet is routed to the matching interfaces.
25 IPv6 Routing Internet protocol version 6 (IPv6) routing is the successor to IPv4. Due to the rapid growth in internet users and IP addresses, IPv4 is reaching its maximum usage. IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
Dell Networking OS manipulation of IPv6 stateless autoconfiguration supports the router side only. Neighbor discovery (ND) messages are advertised so the neighbor can use this information to auto-configure its address. However, received ND messages are not used to create an IPv6 address. NOTE: Inconsistencies in router advertisement values between routers are logged per RFC 4861.
Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version. Traffic Class (8 bits) The Traffic Class field deals with any data that needs special handling. These bits define the packet priority and are defined by the packet Source. Sending and forwarding routers use this field to identify different IPv6 classes and priorities. Routers understand the priority settings and handle them appropriately during conditions of congestion.
Hop Limit (8 bits) The Hop Limit field shows the number of hops remaining for packet processing. In IPv4, this is known as the Time to Live (TTL) field and uses seconds rather than hops. Each time the packet moves through a forwarding router, this field decrements by 1. If a router receives a packet with a Hop Limit of 1, it decrements it to 0 (zero). The router discards the packet and sends an ICMPv6 message back to the sending router indicating that the Hop Limit was exceeded in transit.
10 Discard the packet and send an ICMP Parameter Problem Code 2 message to the packet’s Source IP Address identifying the unknown option type. 11 Discard the packet and send an ICMP Parameter Problem, Code 2 message to the packet’s Source IP Address only if the Destination IP Address is not a multicast address. The second byte contains the Option Data Length. The third byte specifies whether the information can change en route to the destination.
In IPv6, every interface, whether using static or dynamic address assignments, also receives a local-link address automatically in the fe80::/64 subnet. Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system.
Figure 58. Path MTU Discovery Process IPv6 Neighbor Discovery The IPv6 neighbor discovery protocol (NDP) is a top-level protocol for neighbor discovery on an IPv6 network. In place of address resolution protocol (ARP), NDP uses “Neighbor Solicitation” and “Neighbor Advertisement” ICMPv6 messages for determining relationships between neighboring nodes.
Figure 59. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate. For example, if you set ipv6 nd mtu to 1280, the interface still passes 1500-byte packets, if that is what is set with the mtu command.
• invalid host addresses If you specify this information in the IPv6 RDNSS configuration, a DNS error is displayed. Example for Configuring an IPv6 Recursive DNS Server The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
ff02::1:ff8b:7570 ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 20120 milliseconds ND base reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 198 to 600 seconds ND router advertisements live for 1800 seconds ND advertised hop limit is 64 IPv6 hop limit for originated packets is 64 ND dns-server address is 1000::1 with lifetime o
• L3 ACL (ipv4acl): 6 • L2 ACL(l2acl): 5 • IPv6 L3 ACL (ipv6acl): 0 • L3 QoS (ipv4qos): 1 • L2 QoS (l2qos): 1 To have the changes take effect, save the new CAM settings to the startup-config (write-mem or copy run start) then reload the system for the new settings. • Allocate space for IPV6 ACLs. Enter the CAM profile name then the allocated amount. CONFIGURATION mode cam-acl { ipv6acl } When not selecting the default option, enter all of the profiles listed and a range for each.
NOTE: After you configure a static IPv6 route (the ipv6 route command) and configure the forwarding router’s address (specified in the ipv6 route command) on a neighbor’s interface, the IPv6 neighbor does not display in the show ipv6 route command output. • Set up IPv6 static routes.
Displaying IPv6 Information View specific IPv6 configuration with the following commands. • List the IPv6 show options.
Advertised by: fe80::201:e8ff:fe8b:3166 Global Anycast address(es): Joined Group address(es): ff02::1 ff02::1:ff8b:386e ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 32000 milliseconds ND base reachable time is 30000 milliseconds ND retransmit interval is 1000 milliseconds ND hop limit is 64 Showing IPv6 Routes To view the global IPv6 routing information, use the following command. • Show IPv6 routing information for the specified route type.
C 600::/64 [0/0] Direct, Te 1/24, 00:34:42 C 601::/64 [0/0] Direct, Te 1/24, 00:34:18 C 912::/64 [0/0] Direct, Lo 2, 00:02:33 O IA 999::1/128 [110/2] via fe80::201:e8ff:fe8b:3166, Te 1/24, 00:01:30 L fe80::/10 [0/0] Direct, Nu 0, 00:34:42 Dell# The following example shows the show ipv6 route static command.
Configuring IPv6 RA Guard The IPv6 Router Advertisement (RA) guard allows you to block or reject the unwanted router advertisement guard messages that arrive at the network device platform. To configure the IPv6 RA guard, perform the following steps: 1. Configure the terminal to enter the Global Configuration mode. EXEC Privilege mode configure terminal 2. Enable the IPv6 RA guard. CONFIGURATION mode ipv6 nd ra-guard enable 3. Create the policy.
router—lifetime value The router lifetime range is from 0 to 9,000 seconds. 11. Apply the policy to trusted ports. POLICY LIST CONFIGURATION mode trusted-port 12. Set the maximum transmission unit (MTU) value. POLICY LIST CONFIGURATION mode mtu value The MTU range is from 1,280 to 11,982 bytes. 13. Set the advertised reachability time. POLICY LIST CONFIGURATION mode reachable—time value The reachability time range is from 0 to 3,600,000 milliseconds. 14. Set the advertised retransmission time.
EXEC Privilege mode show ipv6 nd ra-guard policy policy-name The policy name string can be up to 140 characters. Example of the show ipv6 nd ra-guard policy Command Monitoring IPv6 RA Guard To debug IPv6 RA guard, use the following command. EXEC Privilege mode debug ipv6 nd ra-guard [interface slot/port | count value] The count range is from 1 to 65534. The default is infinity. For a complete listing of all commands related to IPv6 RA Guard, see the Dell Networking OS Command Line Reference Guide.
26 iSCSI Optimization This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-ofservice (QoS) treatment for iSCSI traffic.
switch is configured to use dot1p priority-queue assignments to ensure that iSCSI traffic in these sessions receives priority treatment when forwarded on stacked switch hardware. Figure 60. iSCSI Optimization Example Default iSCSI Optimization Values The following table lists the default values for the iSCSI optimization feature. Table 36. iSCSI Optimization Defaults Parameter Default Value iSCSI Optimization global setting iSCSI CoS mode (802.
Parameter Default Value Remark Not configured. iSCSI session aging time 10 minutes iSCSI optimization target ports iSCSI well-known ports 3260 and 860 are configured as default (with no IP address or name) but can be removed as any other configured target. iSCSI session monitoring Disabled. The CAM allocation for iSCSI is set to zero (0). iSCSI Optimization Prerequisites The following are iSCSI optimization prerequisites. • iSCSI optimization requires LLDP on the switch.
5. Reload the switch. EXEC Privilege mode reload After the switch is reloaded, DCB/ DCBx and iSCSI monitoring are enabled. 6. (Optional) Configure the iSCSI target ports and optionally the IP addresses on which iSCSI communication is monitored. CONFIGURATION mode [no] iscsi target port tcp-port-1 [tcp-port-2...tcp-port-16] [ip-address address] • tcp-port-n is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests.
You can send iSCSI TLVs either globally or on a specified interface. The interface configuration takes priority over global configuration. The default is Enabled. 10. (Optional) Configures the advertised priority bitmap in iSCSI application TLVs. LLDP CONFIGURATION mode [no] iscsi priority-bits. The default is 4 (0x10 in the bitmap). 11. (Optional) Configures the auto-detection of Compellent arrays on a port. INTERFACE mode [no] iscsi profile-compellent.
The following example shows the show iscsi session command. VLT PEER1 Dell#show iscsi session Session 0: ---------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.microsoft:win-x9l8v27yajg ISID: 400001370000 VLT PEER2 Session 0: ----------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0f60c2002-0360018428d48c94-iom011 iqn.
The following message displays when you enable iSCSI on a switch and describes the configuration changes that are automatically performed: %SYSTEM:CP %IFMGR-5-IFM_ISCSI_ENABLE: iSCSI has been enabled causing flow control to be enabled on all interfaces. EQL detection and enabling iscsi profile-compellent on an interface may cause some automatic configurations to occur like jumbo frames on all ports and no storm control and spanning tree port-fast on the port of detection.
If more than 256 simultaneous sessions are logged continuously, the following message displays indicating the queue rate limit has been reached: %Z9500LC48:1 %ACL_AGENT-3-ISCSI_OPT_MAX_SESS_LIMIT_REACHED: Monitored iSCSI sessionsreached maximum limit NOTE: If you are using EqualLogic or Compellent storage arrays, more than 256 simultaneous iSCSI sessions are possible. However, iSCSI session monitoring is not capable of monitoring more than 256 simultaneous iSCSI sessions.
including jumbo frames and flow-control on all ports; no storm control and spanning-tree port fast to be enabled on the port of detection. After you execute the iscsi profile-compellent command, the following actions occur: • MTU is set to 1200 for all interfaces on all ports and port-channels, if it is not already enabled. • Spanning-tree portfast is enabled on the interface. • Unicast storm control is disabled on the interface.
27 Intermediate System to Intermediate System The intermediate system to intermediate system (IS-IS) protocol that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. IS-IS Protocol Overview The IS-IS protocol, developed by the International Organization for Standardization (ISO), is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm.
Figure 61. ISO Address Format Multi-Topology IS-IS Multi-topology IS-IS (MT IS-IS) allows you to create multiple IS-IS topologies on a single router with separate databases. Use this feature to place a virtual physical topology into logical routing domains, which can each support different routing and security policies. All routers on a LAN or point-to-point must have at least one common supported topology when operating in Multi-Topology IS-IS mode.
neighbor within its LSPs. The local router does not form an adjacency if both routers do not have at least one common MT over the interface. Graceful Restart Graceful restart is a protocol-based mechanism that preserves the forwarding table of the restarting router and its neighbors for a specified period to minimize the loss of packets. A graceful-restart router does not immediately assume that a neighbor is permanently down and so does not trigger a topology change.
By default, Dell Networking OS supports dynamic host name exchange to assist with troubleshooting and configuration. By assigning a name to an IS-IS NET address, you can track IS-IS information on that address easier. Dell Networking OS does not support ISO CLNS routing; however, the ISO NET format is supported for addressing. To support IPv6, the Dell Networking implementation of IS-IS performs the following tasks: • Advertises IPv6 information in the PDUs.
• Setting the Overload Bit • Debuging IS-IS Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols. In IS-IS, neighbors form adjacencies only when they are same IS type. For example, a Level 1 router never forms an adjacency with a Level 2 router.
• ipv6 address: x:x:x:x::x • mask: The prefix length is from 0 to 128. The IPv6 address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 6. Enable IS-IS on the IPv4 interface. ROUTER ISIS mode ip router isis [tag] If you configure a tag variable, it must be the same as the tag variable assigned in step 1. 7. Enable IS-IS on the IPv6 interface.
IS-IS: LSP checksum errors received : 0 IS-IS: LSP authentication failures : 0 Dell# You can assign more NET addresses, but the System ID portion of the NET address must remain the same. Dell Networking OS supports up to six area addresses. Some address considerations are: • In order to be neighbors, configure Level 1 routers with at least one common area address. • A Level 2 router becomes a neighbor with another Level 2 router regardless of the area address configured.
graceful-restart interval minutes The range is from 1 to 120 minutes. • The default is 5 minutes. Enable the graceful restart maximum wait time before a restarting peer comes up. ROUTER-ISIS mode graceful-restart restart-wait seconds When implementing this command, be sure to set the t3 timer to adjacency on the restarting router. The range is from 1 to 120 minutes. • The default is 30 seconds.
Graceful Restart Interval/Blackout time T3 Timer T3 Timeout Value T2 Timeout Value T1 Timeout Value Adjacency wait time : : : : : : : Operational Timer Value ====================== Current Mode/State : T3 Time left : T2 Time left : Restart ACK rcv count : Restart Req rcv count : Suppress Adj rcv count : Restart CSNP rcv count : Database Sync count : Enabled 1 min Manual 30 30 (level-1), 30 (level-2) 5, retry count: 1 30 Normal/RUNNING 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (leve
– seconds: the range is from 0 to 120. The default is 5 seconds. • The default level is Level 1. Set the LSP size. ROUTER ISIS mode lsp-mtu size – size: the range is from 128 to 9195. • The default is 1497. Set the LSP refresh interval. ROUTER ISIS mode lsp-refresh-interval seconds – seconds: the range is from 1 to 65535. • The default is 900 seconds. Set the maximum time LSPs lifetime. ROUTER ISIS mode max-lsp-lifetime seconds – seconds: the range is from 1 to 65535. The default is 1200 seconds.
Table 38. Metric Styles Metric Style Characteristics Cost Range Supported on IS-IS Interfaces narrow Sends and accepts narrow or old TLVs (Type, Length, Value). 0 to 63 wide Sends and accepts wide or new TLVs. 0 to 16777215 transition Sends both wide (new) and narrow (old) TLVs. 0 to 63 narrow transition Sends narrow (old) TLVs and accepts both narrow (old) and wide (new) TLVs. 0 to 63 wide transition Sends wide (new) TLVs and accepts both narrow (old) and wide (new) TLVs.
– default-metric: the range is from 0 to 63 if the metric-style is narrow, narrow-transition, or transition. • The range is from 0 to 16777215 if the metric style is wide or wide transition. Assign a metric for an IPv6 link or interface. INTERFACE mode isis ipv6 metric default-metric [level-1 | level-2] – default-metric: the range is from 0 to 63 for narrow and transition metric styles. The range is from 0 to 16777215 for wide metric styles. The default is 10. The default level is level-1.
Example of the show isis database Command to View Level 1-2 Link State Databases To view which IS-type is configured, use the show isis protocol command in EXEC Privilege mode. The show config command in ROUTER ISIS mode displays only non-default information. If you do not change the IS-type, the default value (level-1-2) is not displayed. The default is Level 1-2 router. When the IS-type is Level 1-2, the software maintains two Link State databases, one for each level.
– For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number. • – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
– bgp: for BGP routes only. • Deny RTM download for pre-existing redistributed IPv6 routes. ROUTER ISIS-AF IPV6 mode distribute-list redistributed-override in Redistributing IPv4 Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the IS-IS process. With the redistribute command syntax, you can include BGP, OSPF, RIP, static, or directly connected routes in the IS-IS process.
redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. – metric-value: the range is from 0 to 16777215. The default is 0. – metric-type: choose either external or internal. The default is internal. • – map-name: enter the name of a configured route map.
To remove a password, use either the no area-password or no domain-password commands in ROUTER ISIS mode. Setting the Overload Bit Another use for the overload bit is to prevent other routers from using this router as an intermediate hop in their shortest path first (SPF) calculations. For example, if the IS-IS routing database is out of memory and cannot accept new LSPs, Dell Networking OS sets the overload bit and IS-IS traffic continues to transit the system.
To view specific information, enter the following optional parameter: – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. • View IS-IS SNP packets, include CSNPs and PSNPs. EXEC Privilege mode debug isis snp-packets [interface] To view specific information, enter the following optional parameter: – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only.
Metric Style Correct Value Range for the isis metric Command wide 0 to 16777215 narrow 0 to 63 wide transition 0 to 16777215 narrow transition 0 to 63 transition 0 to 63 Maximum Values in the Routing Table IS-IS metric styles support different cost ranges for the route. The cost range for the narrow metric style is 0 to 1023, while all other metric styles support a range of 0 to 0xFE000000. Change the IS-IS Metric Style in One Level Only By default, the IS-IS metric style is narrow.
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value wide transition wide original value wide transition narrow default value (10) if the original value is greater than 63. A message is sent to the console.
Level-1 Metric Style Level-2 Metric Style Resulting Metric Value wide narrow transition truncated value wide wide transition original value wide transition truncated value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value transition wide original value transition narrow original value transition wide transition original value transition narrow transition
Figure 62. IPv6 IS-IS Sample Topography IS-IS Sample Configuration — Congruent Topology IS-IS Sample Configuration — Multi-topology IS-IS Sample Configuration — Multi-topology Transition The following is a sample configuration for enabling IPv6 IS-IS. Dell(conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ip address 24.3.1.
exit-address-family Dell (conf-router_isis)# Dell (conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
28 Link Aggregation Control Protocol (LACP) A link aggregation group (LAG), referred to as a port channel by the Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic.
• You can configure link dampening on individual members of a LAG. LACP Modes Dell Networking OS provides three modes for configuration of LACP — Off, Active, and Passive. • Off — In this state, an interface is not capable of being part of a dynamic LAG. LACP does not run on any port that is configured to be in this state. • Active — In this state, the interface is said to be in the “active negotiating state.” LACP runs on any link that is configured to be in this state.
LACP Configuration Tasks The following configuration tasks apply to LACP. • Creating a LAG • Configuring the LAG Interfaces as Dynamic • Setting the LACP Long Timeout • Monitoring and Debugging LACP • Configuring Shared LAG State Tracking Creating a LAG To create a dynamic port channel (LAG), use the following command. First you define the LAG and then the LAG interfaces. • Create a dynamic port channel (LAG). CONFIGURATION mode • interface port-channel Create a dynamic port channel (LAG).
Dell(conf-if-te-4/16)#no shutdown Dell(conf-if-te-4/16)#port-channel-protocol lacp Dell(conf-if-te-4/16-lacp)#port-channel 32 mode active The port-channel 32 mode active command shown here may be successfully issued as long as there is no existing static channelmember configuration in LAG 32. Setting the LACP Long Timeout PDUs are exchanged between port channel (LAG) interfaces to maintain LACP sessions. PDUs are transmitted at either a slow or fast transmission rate, depending upon the LACP timeout value.
Shared LAG State Tracking Shared LAG state tracking provides the flexibility to bring down a port channel (LAG) based on the operational state of another LAG. At any time, only two LAGs can be a part of a group such that the fate (status) of one LAG depends on the other LAG. As shown in the following illustration, the line-rate traffic from R1 destined for R4 follows the lowest-cost route via R2. Traffic is equally distributed between LAGs 1 and 2.
port-channel failover-group group 1 port-channel 1 port-channel 2 As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 64.
LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 65. LACP Basic Configuration Example Configure a LAG on ALPHA The following example creates a LAG on ALPHA.
0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics 136 packets, 16718 bytes, 0 underruns 0 64-byte pkts, 15 over 64-byte pkts, 121 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 136 Multicasts, 0 Broadcasts, 0 Unicasts 0 Vlans, 0 throttles, 0 discarded, 0 collisions, 0 wreddrops Rate info (interval 299 seconds): Input 00.00 Mbits/sec,0 packets/sec, 0.00% of line-rate Output 00.00 Mbits/sec,0 packets/sec, 0.
Figure 67.
Figure 68.
Summary of the LAG Configuration on Bravo Bravo(conf-if-te-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int tengig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-te-3/21)#port-channel-protocol lacp Bravo(conf-if-te-3/21-lacp)#port-channel 10 mode active Bravo(
Figure 69.
Figure 70.
Figure 71. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
29 Layer 2 This chapter describes the Layer 2 features supported on the device. Manage the MAC Address Table You can perform the following management tasks in the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
• Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table. EXEC Privilege mode show mac-address-table [address | aging-time [vlan vlan-id]| count | dynamic | interface | static | vlan] – address: displays the specified entry. – aging-time: displays the configured aging-time.
Setting the MAC Learning Limit To set a MAC learning limit on an interface, use the following command. • Specify the number of MAC addresses that the system can learn off a Layer 2 interface. INTERFACE mode mac learning-limit address_limit Three options are available with the mac learning-limit command: – dynamic – no-station-move – station-move NOTE: An SNMP trap is available for mac learning-limit station-move. No other SNMP traps are available for MAC Learning Limit, including limit violations.
mac learning-limit no-station-move The no-station-move option, also known as “sticky MAC,” provides additional port security by preventing a station move. When you configure this option, the first entry in the table is maintained instead of creating an entry on the new interface. nostation-move is the default behavior. Entries created before you set this option are not affected. To display a list of all interfaces with a MAC learning limit, use the following command.
station-move-violation shutdown-offending • Shut down both the first and second port to learn the MAC address. INTERFACE mode station-move-violation shutdown-both • Display a list of all of the interfaces configured with MAC learning limit or station move violation. CONFIGURATION mode show mac learning-limit violate-action NOTE: When the MAC learning limit (MLL) is configured as no-station-move, the MLL will be processed as static entries internally.
Figure 72. Redundant NICs with NIC Teaming When you use NIC teaming, consider that the server MAC address is originally learned on Port 0/1 of the switch (shown in the following) and Port 0/5 is the failover port. When the NIC fails, the system automatically sends an ARP request for the gateway or host NIC to resolve the ARP and refresh the egress interface.
(as shown in the following illustration). The redundant pairs feature allows you to create redundant links in networks that do not use STP by configuring backup interfaces for the interfaces on either side of the primary link. NOTE: For more information about STP, refer to Spanning Tree Protocol (STP). Assign a backup interface to an interface using the switchport backup command. The backup interface remains in a Down state until the primary fails, at which point it transitions to Up state.
To ensure that existing network applications see no difference when a primary interface in a redundant pair transitions to the backup interface, be sure to apply identical configurations of other traffic parameters to each interface. If you remove an interface in a redundant link (remove the line card of a physical interface or delete a port channel with the no interface port-channel command), the redundant pair configuration is also removed.
2 L2 up 00:00:02 Te 2/1 (Up) Dell#configure Dell(conf)#interface port-channel 1 Dell(conf-if-po-1)#switchport backup interface port-channel 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-L2BKUP_WARN: Do not run any Layer2 protocols on Po 1 and Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-STATE_ACT_STBY: Changed interface state to standby: Po 2 Dell(conf-if-po-1)# Dell# Dell#show interfaces switchport backup Interface Status
In the event of a far-end failure, the device stops receiving frames and, after the specified time interval, assumes that the far-end is not available. The connecting line protocol is brought down so that upper layer protocols can detect the neighbor unavailability faster. FEFD State Changes FEFD has two operational modes, Normal and Aggressive.
• Enable FEFD globally on all interfaces. CONFIGURATION mode fefd-global To report interval frequency and mode adjustments, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Enable the necessary ports administratively. INTERFACE mode no shutdown 3. Enable fefd globally.
To set up and activate two or more connected interfaces, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTERFACE mode no shutdown 3.
Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) Layer 2 489
30 Link Layer Discovery Protocol (LLDP) This chapter describes how to configure and use the link layer discovery protocol (LLDP). 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Type TLV Description 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received. — Optional Includes sub-types of TLVs that advertise specific configuration information. These sub-types are Management TLVs, IEEE 802.1, IEEE 802.3, and TIA-1057 Organizationally Specific TLVs. Figure 77.
IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.3 working groups as a basic part of LLDP; the IEEE OUI is 00-80-C2. You can configure the Dell Networking system to advertise any or all of these TLVs. Table 44. Optional TLV Types Type TLV Description 4 Port description A user-defined alphanumeric string that describes the port. Dell Networking OS does not currently support this TLV.
Type TLV Description 127 Link Aggregation Indicates whether the link is capable of being aggregated, whether it is currently in a LAG, and the port identification of the LAG. Dell Networking OS does not currently support this TLV. 127 Maximum Frame Size Indicates the maximum frame size capability of the MAC and PHY.
Type SubType TLV Description 127 3 Location Identification Indicates that the physical location of the device expressed in one of three possible formats: • • • 127 4 Inventory Management TLVs Implementation of this set of TLVs is optional in LLDP-MED devices. None or all TLVs must be supported. Dell Networking OS does not currently support these TLVs.
Figure 79. LLDP-MED Capabilities TLV Table 46. Dell Networking OS LLDP-MED Capabilities Bit Position TLV Dell Networking OS Support 0 LLDP-MED Capabilities Yes 1 Network Policy Yes 2 Location Identification Yes 3 Extended Power via MDI-PSE Yes 4 Extended Power via MDI-PD No 5 Inventory No 6–15 reserved No Table 47.
Table 48. Network Policy Applications Type Application Description 0 Reserved — 1 Voice Specify this application type for dedicated IP telephony handsets and other appliances supporting interactive voice services. 2 Voice Signaling Specify this application type only if voice control packets use a separate network policy than voice data.
Figure 81. Extended Power via MDI TLV Configure LLDP Configuring LLDP is a two-step process. 1. Enable LLDP globally. 2. Advertise TLVs out of an interface. Related Configuration Tasks • Viewing the LLDP Configuration • Viewing Information Advertised by Adjacent LLDP Agents • Configuring LLDPDU Intervals • Configuring Transmit and Receive Mode • Configuring a Time to Live • Debugging LLDP Important Points to Remember • LLDP is enabled by default.
no show Negate a command or set its defaults Show LLDP configuration Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/3 Dell(conf-if-te-1/3)#protocol lldp Dell(conf-if-te-1/3-lldp)#? advertise Advertise TLVs disable Disable LLDP protocol on this interface end Exit from configuration mode exit Exit from LLDP configuration mode hello LLDP hello configuration mode LLDP mode configuration (default = rx and tx) multiplier LLDP multiplier configuration no Negate a command or set its defaults show
Disabling and Undoing LLDP on Management Ports To disable or undo LLDP on management ports, use the following command. 1. Enter Protocol LLDP mode. CONFIGURATION mode. protocol lldp 2. Enter LLDP management-interface mode. LLDP-MANAGEMENT-INTERFACE mode. management-interface 3. Enter the disable command. LLDP-MANAGEMENT-INTERFACE mode. To undo an LLDP management port configuration, precede the relevant command with the keyword no.
– voice-signaling In the following example, LLDP is enabled globally. R1 and R2 are transmitting periodic LLDPDUs that contain management, 802.1, and 802.3 TLVs. Figure 82. Configuring LLDP Viewing the LLDP Configuration To view the LLDP configuration, use the following command. • Display the LLDP configuration. CONFIGURATION or INTERFACE mode show config Examples of Viewing LLDP Configurations The following example shows viewing an LLDP global configuration.
Viewing Information Advertised by Adjacent LLDP Agents To view brief information about adjacent devices or to view all the information that neighbors are advertising, use the following commands. • Display brief information about adjacent devices. show lldp neighbors • Display all of the information that neighbors are advertising.
Configuring LLDPDU Intervals LLDPDUs are transmitted periodically; the default interval is 30 seconds. To configure LLDPDU intervals, use the following command. • Configure a non-default transmit interval.
Example of Configuring a Single Mode R1(conf)#protocol lldp R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)#mode ? rx Rx only tx Tx only R1(conf-lldp)#mode tx R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-
R1(conf-lldp)#no multiplier R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)# Debugging LLDP You can view the TLVs that your system is sending and receiving. To view the TLVs, use the following commands. • View a readable version of the TLVs.
• the LLDP configuration on the local agent • IEEE 802.1AB Organizationally Specific TLVs • received and transmitted LLDP-MED TLVs Table 49. LLDP Configuration MIB Objects MIB Object Category LLDP Variable LLDP MIB Object Description LLDP Configuration adminStatus lldpPortConfigAdminStatus Whether you enable the local LLDP agent for transmit, receive, or both. msgTxHold lldpMessageTxHoldMultiplier Multiplier value. msgTxInterval lldpMessageTxInterval Transmit Interval value.
TLV Type 4 TLV Name Port Description 5 System Name 6 System Description 7 System Capabilities 8 Management Address TLV Variable System LLDP MIB Object port ID Local lldpLocPortId Remote lldpRemPortId Local lldpLocPortDesc Remote lldpRemPortDesc Local lldpLocSysName Remote lldpRemSysName Local lldpLocSysDesc Remote lldpRemSysDesc Local lldpLocSysCapSupported Remote lldpRemSysCapSupported Local lldpLocSysCapEnabled Remote lldpRemSysCapEnabled Local lldpLocManAddrLen R
TLV Type TLV Name TLV Variable System LLDP MIB Object port and protocol VLAN enabled Local lldpXdot1LocProtoVlanEna bled Remote lldpXdot1RemProtoVlanEn abled Local lldpXdot1LocProtoVlanId Remote lldpXdot1RemProtoVlanId Local lldpXdot1LocVlanId Remote lldpXdot1RemVlanId Local lldpXdot1LocVlanName Remote lldpXdot1RemVlanName Local lldpXdot1LocVlanName Remote lldpXdot1RemVlanName PPVID 127 VLAN Name VID VLAN name length VLAN name Table 52.
TLV Sub-Type TLV Name TLV Variable L2 Priority DSCP Value 3 Location Identifier Location Data Format Location ID Data 4 Extended Power via MDI Power Device Type Power Source System LLDP-MED MIB Object Remote lldpXMedRemMediaPolicy VlanID Local lldpXMedLocMediaPolicyP riority Remote lldpXMedRemMediaPolicy Priority Local lldpXMedLocMediaPolicy Dscp Remote lldpXMedRemMediaPolicy Dscp Local lldpXMedLocLocationSubt ype Remote lldpXMedRemLocationSub type Local lldpXMedLocLocationInfo
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object Remote lldpXMedRemXPoEPSEP owerAv lldpXMedRemXPoEPDPo werReq Link Layer Discovery Protocol (LLDP) 509
31 Microsoft Network Load Balancing Network Load Balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems. Microsoft NLB clustering allows multiple servers running Microsoft Windows to be represented by one MAC and one IP address to provide transparent failover and load-balancing.
In multicast NLB mode, data is forwarded to all servers in the cluster based on the port specified using the Layer 2 multicast command: mac-address-table static multicast vlan output-range , , ... in CONFIGURATION mode. NLB Benefits You must configure a switch to recognize Microsoft NLB clustering so that multiple servers using Microsoft Windows can be represented by one MAC address and IP address to support transparent server failover and load-balancing.
Configuring NLB on a Switch You can enable NLB functionality to operate in unicast or multicast mode on a switch. To enable NLB unicast mode: Enter the ip vlan-flooding command to enable Layer 3 unicast data traffic routed through a VLAN port to be flooded on all member ports of the VLAN connected to a server cluster.
32 Multicast Source Discovery Protocol (MSDP) Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 85. MSDP SA Message Format Anycast RP Using MSDP, anycast RP provides load sharing and redundancy in PIM-SM networks. Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and the ability to act as hot backup routers for each other. Anycast RP allows you to configure two or more RPs with the same IP address on Loopback interfaces. The Anycast RP Loopback address are configured with a 32-bit mask, making it a host address.
3. Enable MSDP. 4. Peer the RPs in each routing domain with each other. Refer to Enable MSDP. Related Configuration Tasks The following lists related MSDP configuration tasks.
Figure 86.
Figure 87.
Figure 88.
Figure 89. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains. CONFIGURATION mode ip msdp peer connect-source Examples of Configuring and Viewing MSDP R3(conf)#ip multicast-msdp R3(conf)#ip msdp peer 192.168.0.
Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache). The system does not create entries in the multicast routing table until there is a local receiver for the corresponding multicast group. R3#show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
Clearing the Source-Active Cache To clear the source-active cache, use the following command. • Clear the SA cache of all, local, or rejected entries, or entries for a specific group. CONFIGURATION mode clear ip msdp sa-cache [group-address | local | rejected-sa] Enabling the Rejected Source-Active Cache To cache rejected sources, use the following command.
Figure 90.
Figure 91.
Figure 92.
Figure 93. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
229.0.50.2 229.0.50.3 229.0.50.4 24.0.50.2 24.0.50.3 24.0.50.4 200.0.0.50 200.0.0.50 200.0.0.50 10.0.50.2 10.0.50.2 10.0.50.2 Dell#ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.65 200.0.1.50 00:33:18 229.0.50.66 24.0.50.66 200.0.1.50 73 73 73 00:13:49 00:13:49 00:13:49 LearnedFrom 10.0.50.2 10.0.50.2 10.0.50.
R1_E600(conf)#do show ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 1 rejected SAs received, cache-size 1000 UpTime GroupAddr SourceAddr RPAddr LearnedFrom 00:02:20 239.0.0.1 10.11.4.2 192.168.0.1 local Reason Redistribute Preventing MSDP from Caching a Remote Source To prevent MSDP from caching a remote source, use the following commands. 1. OPTIONAL: Cache sources that the SA filter denies in the rejected SA cache. CONFIGURATION mode ip msdp cache-rejected-sa 2.
Example of Verifying the System is not Advertising Local Sources In the following example, R1 stops advertising source 10.11.4.2. Because it is already in the SA cache of R3, the entry remains there until it expires. [Router 1] R1(conf)#do show run msdp ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 0 ip msdp sa-filter out 192.168.0.3 list mylocalfilter R1(conf)#do show run acl ! ip access-list extended mylocalfilter seq 5 deny ip host 239.0.0.1 host 10.11.4.
Input (S,G) filter: myremotefilter Output (S,G) filter: none [Router 1] R1(conf)#do show ip msdp peer Peer Addr: 192.168.0.3 Local Addr: 0.0.0.0(0) Connect Source: Lo 0 State: Inactive Up/Down Time: 00:00:03 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Clearing Peer Statistics To clear the peer statistics, use the following command. • Reset the TCP connection to the peer and clear all peer statistics.
03:17:09 : MSDP-0: Peer 192.168.0.3, 03:17:10 : MSDP-0: Peer 192.168.0.3, 03:17:27 : MSDP-0: Peer 192.168.0.3, Input (S,G) filter: none Output (S,G) filter: none sent Keepalive msg rcvd Keepalive msg sent Source Active msg MSDP with Anycast RP Anycast RP uses MSDP with PIM-SM to allow more than one active group to use RP mapping.
Figure 94. MSDP with Anycast RP Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group. CONFIGURATION mode ip pim rp-address 3.
CONFIGURATION mode ip msdp peer 5. Advertise the network of each of the unique Loopback addresses throughout the network. ROUTER OSPF mode network Reducing Source-Active Message Flooding RPs flood source-active messages to all of their peers away from the RP. When multiple RPs exist within a domain, the RPs forward received active source information back to the originating RP, which violates the RFP rule. You can prevent this unnecessary flooding by creating a mesh-group.
33 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances. Protocol Overview MSTP — specified in IEEE 802.
Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 53. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .
Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands. When you enable MSTP, all physical, VLAN, and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the MSTI 0. • Within an MSTI, only one path from any bridge to any other bridge is enabled. • Bridges block a redundant path by disabling one of the link ports. 1. Enter PROTOCOL MSTP mode. CONFIGURATION mode protocol spanning-tree mstp 2.
Dell(conf-mstp)#show config ! protocol spanning-tree mstp no disable MSTI 1 VLAN 100 MSTI 2 VLAN 200-300 All bridges in the MSTP region must have the same VLAN-to-instance mapping. To view which instance a VLAN is mapped to, use the show spanning-tree mst vlan command from EXEC Privilege mode.
• Name is a mnemonic string you assign to the region. The default region name is null. • Revision is a 2-byte number. The default revision number OS is 0. • VLAN-to-instance mapping is the placement of a VLAN in an MSTI. For a bridge to be in the same MSTP region as another, all three of these qualities must match exactly. The default values for the name and revision number must match on all Dell Networking OS devices.
The range is from 4 to 30. The default is 15 seconds. 2. Change the hello-time parameter. PROTOCOL MSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. 3. Change the max-age parameter. PROTOCOL MSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. 4. Change the max-hops parameter.
Table 54. Default Values for Port Costs by Interface Port Cost Default Value 100-Mb/s Ethernet interfaces 200000 1-Gigabit Ethernet interfaces 20000 10-Gigabit Ethernet interfaces 2000 Port Channel with 100 Mb/s Ethernet interfaces 180000 Port Channel with 1-Gigabit Ethernet interfaces 18000 Port Channel with 10-Gigabit Ethernet interfaces 1800 To change the port cost or priority of an interface, use the following commands. 1. Change the port cost of an interface.
– When you remove a physical port from a port channel in the Error Disable state, the error disabled state is cleared on this physical port (the physical port is enabled in the hardware). – The reset linecard command does not clear the Error Disabled state of the port or the Hardware Disabled state. The interface continues to be disabled in the hardware. – You can clear the Error Disabled state with any of the following methods: * Use the shutdown command on the interface.
1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs. Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs. EXEC Privilege mode debug spanning-tree mstp bpdu • Display MSTP-triggered topology change messages. debug spanning-tree mstp events Examples of Viewing MSTP Configurations To ensure all the necessary parameters match (region name, region version, and VLAN to instance mapping), examine your individual routers.
34 Multicast Features Dell Networking OS supports the following multicast protocols: NOTE: Multicast routing is supported on secondary IP addresses; it is not supported on IPv6. NOTE: Multicast routing is supported across default and non-default VRFs. • PIM Sparse-Mode (PIM-SM) • Internet Group Management Protocol (IGMP) • Multicast Source Discovery Protocol (MSDP) Enabling IP Multicast Before enabling any multicast protocols, you must enable IP multicast routing.
• The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fenner-traceroute-ipm. • Multicast is not supported on secondary IP addresses. • Egress L3 ACL is not applied to multicast data traffic if you enable multicast routing. First Packet Forwarding for Lossless Multicast All initial multicast packets are forwarded to receivers to achieve lossless multicast.
• Limit the total number of multicast routes on the system. CONFIGURATION mode ip multicast-limit The range if from 1 to 50000. The default is 4000. NOTE: The IN-L3-McastFib CAM partition is used to store multicast routes and is a separate hardware limit that exists per port-pipe. Any software-configured limit may supersede this hardware space limitation.
Figure 97. Preventing a Host from Joining a Group The following table lists the location and description shown in the previous illustration. Table 55. Preventing a Host from Joining a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • • ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface TenGigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown 3/11 • • • • Interface TenGigabitEthernet 3/11 ip pim sparse-mode ip address 10.11.13.
Preventing a PIM Router from Forming an Adjacency To prevent a router from participating in PIM (for example, to configure stub multicast routing), use the following command. • Prevent a router from participating in PIM. INTERFACE mode ip pim neighbor-filter Preventing a Source from Registering with the RP To prevent the PIM source DR from sending register packets to RP for the specified multicast source and group, use the following command.
Figure 98. Preventing a Source from Transmitting to a Group The following table lists the location and description shown in the previous illustration. Table 56. Preventing a Source from Transmitting to a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • • ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface TenGigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown 3/11 • • • • Interface TenGigabitEthernet 3/11 ip pim sparse-mode ip address 10.11.13.
NOTE: When you configure a join filter that filter is applicable for both ingress and egress flows. There is no option to specify in or out parameters while configuring a join filter.
35 Open Shortest Path First (OSPFv2 and OSPFv3) Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
Figure 99. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.0 and is the core of any AS. All other areas must connect to Area 0. Areas can be defined in such a way that the backbone is not contiguous. In this case, backbone connectivity must be restored through virtual links. Virtual links are configured between any backbone routers that share a link to a non-backbone area and function as if they were direct links.
Networks and Neighbors As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them. The state (up or down) of those links is important. Routers that share a link become neighbors on that segment. OSPF uses the Hello protocol as a neighbor discovery and keep alive mechanism. After two routers are neighbors, they may proceed to exchange and synchronize their databases, which creates an adjacency.
Figure 100. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
Autonomous System Border Router (ASBR) The autonomous system border area router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. Generally, the ASBR connects to a non-interior gate protocol (IGP) such as BGP or uses static routes. Internal Router (IR) The internal router (IR) has adjacencies with ONLY routers in the same area, as Router E, M, and I shown in the example in the Router Types.
For all LSA types, there are 20-byte LSA headers. One of the fields of the LSA header is the link-state ID. Each router link is defined as one of four types: type 1, 2, 3, or 4. The LSA includes a link ID field that identifies, by the network number and mask, the object this link connects to. Depending on the type, the link ID has different meanings. • 1: point-to-point connection to another router/neighboring router. • 2: connection to a transit network IP address of the DR.
Figure 101. Priority and Cost Examples OSPF with Dell Networking OS The Dell Networking OS supports up to 10,000 OSPF routes for OSPFv2. Within the that 10,000 routes, you can designate up to 8,000 routes as external and up to 2,000 as inter/intra area routes. Dell Networking OS version 9.4(0.0) and later support only one OSPFv2 process per VRF. Dell Networking OS version 9.7(0.0) and later support OSPFv3 in VRF. Also, on OSPFv3, Dell Networking OS supports only one OSPFv3 process per VRF.
• Grace LSA, OSPFv3 only (type 11) Fast Convergence (OSPFv2, IPv4 Only) Fast convergence allows you to define the speeds at which LSAs are originated and accepted, and reduce OSPFv2 end-to-end convergence time. Dell Networking OS allows you to accept and originate LSAs as soon as they are available to speed up route information propagation. NOTE: The faster the convergence, the more frequent the route calculations and updates.
LSType:Type-5 AS External id:160.1.2.0 adv:6.1.0.0 seq:0x8000000c 00:10:41 : OSPF(1000:00): Rcv. v:2 t:5(LSAck) l:64 Acks 2 rid:2.2.2.2 aid:1500 chk:0xdbee aut:0 auk: keyid:0 from:Vl 100 LSType:Type-5 AS External id:160.1.1.0 adv:6.1.0.0 seq:0x8000000c LSType:Type-5 AS External id:160.1.2.0 adv:6.1.0.0 seq:0x8000000c 00:10:41 : OSPF(1000:00): Rcv. v:2 t:4(LSUpd) l:100 rid:6.1.0.0 aid:0 chk:0xccbd aut:0 auk: keyid:0 from:Gi 10/21 Number of LSA:2 LSType:Type-5 AS External(5) Age:1 Seq:0x8000000c id:170.1.1.
NOTE: Loop back routes are not installed in the Route Table Manager (RTM) as non-active routes. OSPF features and functions are assigned to each router using the CONFIG-INTERFACE commands for each interface. NOTE: By default, OSPF is disabled. Configuration Task List for OSPFv2 (OSPF for IPv4) You can perform the following tasks to configure Open Shortest Path First version 2 (OSPF for IPv4) on the switch. Two of the tasks are mandatory; others are optional.
If implementing multi-process OSPF, create an equal number of Layer 3 enabled interfaces and OSPF process IDs. For example, if you create four OSPFv2 process IDs, you must have four interfaces with Layer 3 enabled. 1. Assign an IP address to an interface. CONFIG-INTERFACE mode ip address ip-address mask The format is A.B.C.D/M. If you are using a Loopback interface, refer to Loopback Interfaces. 2. Enable the interface. CONFIG-INTERFACE mode no shutdown 3.
Example of Viewing the Current OSPFv2 Status Dell#show ip ospf 55555 Routing Process ospf 55555 with ID 10.10.10.10 Supports only single TOS (TOS0) routes SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Number of area in this router is 0, normal 0 stub 0 nssa 0 Dell# Assigning an OSPFv2 Area After you enable OSPFv2, assign the interface to an OSPF area. Set up OSPF areas and enable OSPFv2 on an interface with the network command. You must have at least one AS area: Area 0.
Example of Viewing Active Interfaces and Assigned Areas Loopback interfaces also help the OSPF process. OSPF picks the highest interface address as the router-id and a Loopback interface address has a higher precedence than other interface addresses. Example of Viewing OSPF Status on a Loopback Interface Configuring Stub Areas OSPF supports different types of LSAs to help reduce the amount of router processing within the areas.
Configuring LSA Throttling Timers Configured link-state advertisement (LSA) timers replace the standard transmit and acceptance times for LSAs. The LSA throttling timers are configured in milliseconds. The interval time increases exponentially until a maximum time is reached. If the maximum time is reached, the system continues to transmit at the maximum interval. If the system is stable for twice the maximum interval time, it reverts to the start-interval timer. The cycle repeats.
Setting the convergence parameter (from 1 to 4) indicates the actual convergence level. Each convergence setting adjusts the LSA parameters to zero, but the fast-convergence parameter setting allows for even finer tuning of the convergence speed. The higher the number, the faster the convergence. To enable or disable fast-convergence, use the following command. • Enable OSPF fast-convergence and specify the convergence level.
• – cost: The range is from 1 to 65535 (the default depends on the interface speed). Change the time interval the router waits before declaring a neighbor dead. CONFIG-INTERFACE mode ip ospf dead-interval seconds – seconds: the range is from 1 to 65535 (the default is 40 seconds). The dead interval must be four times the hello interval. • The dead interval must be the same on all routers in the OSPF network. Change the time interval between hello-packet transmission.
The bold lines in the example show the change on the interface. The change is reflected in the OSPF configuration. Enabling OSPFv2 Authentication To enable or change various OSPF authentication parameters, use the following commands. • Set a clear text authentication scheme on the interface. CONFIG-INTERFACE mode ip ospf authentication-key key Configure a key that is a text string no longer than eight characters. • All neighboring routers must share password to exchange OSPF information.
– transmit delay seconds: the range is from 1 to 3600 (the default is 1). – dead interval seconds: the range is from 1 to 8192 (the default is 40). – authentication key: eight characters. – message digest key keyid: the range is from 1 to 255. – md5 key: 16 characters. If you do not enter other parameters, the defaults are used. Only the area ID and router ID require configuration to create a virtual link. Use EITHER the Authentication Key or the Message Digest (MD5) key.
distribute-list prefix-list-name out [connected | isis | rip | static] Redistributing Routes You can add routes from other routing instances or protocols to the OSPF process. With the redistribute command, you can include RIP, static, or directly connected routes in the OSPF process. NOTE: Do not route iBGP routes to OSPF unless there are route-maps associated with the OSPF redistribution. To redistribute routes, use the following command. • Specify which routes are redistributed into OSPF process.
• show routes To help troubleshoot OSPFv2, use the following commands. • View the summary of all OSPF process IDs enables on the router. EXEC Privilege mode show running-config ospf • View the summary information of the IP routes. EXEC Privilege mode show ip route summary • View the summary information for the OSPF database. EXEC Privilege mode show ip ospf database • View the configuration of OSPF neighbors connected to the local router.
You can copy and paste from these examples to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes. Basic OSPFv2 Router Topology The following illustration is a sample basic OSPFv2 topology. Figure 102.
NOTE: IPv6 and OSPFv3 do not support Multi-Process OSPF. You can only enable a single OSPFv3 process. Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.
The format is A:B:C::F/128. 2. Bring up the interface. CONF-INT-type slot/port mode no shutdown Assigning Area ID on an Interface To assign the OSPFv3 process to an interface, use the following command. The ipv6 ospf area command enables OSPFv3 on an interface and places the interface in the specified area. Additionally, the command creates the OSPFv3 process with ID on the router.
Configuring Stub Areas To configure IPv6 stub areas, use the following command. • Configure the area as a stub area. CONF-IPV6-ROUTER-OSPF mode area area-id stub [no-summary] – no-summary: use these keywords to prevent transmission in to the area of summary ASBR LSAs. – Area ID: a number or IP address assigned when creating the area. You can represent the area ID as a number from 0 to 65536 if you assign a dotted decimal format rather than an IP address.
Configuring a Default Route To generate a default external route into the OSPFv3 routing domain, configure the following parameters. To specify the information for the default route, use the following command. • Specify the information for the default route.
OSPFv3 Authentication Using IPsec: Configuration Notes OSPFv3 authentication using IPsec is implemented according to the specifications in RFC 4552. • To use IPsec, configure an authentication (using AH) or encryption (using ESP) security policy on an interface or in an OSPFv3 area. Each security policy consists of a security policy index (SPI) and the key used to validate OSPFv3 packets. After IPsec is configured for OSPFv3, IPsec operation is invisible to the user.
– null: causes an authentication policy configured for the area to not be inherited on the interface. – ipsec spi number: the security policy index (SPI) value. The range is from 256 to 4294967295. – MD5 | SHA1: specifies the authentication type: Message Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1). – key-encryption-type: (optional) specifies if the key is encrypted. The valid values are 0 (key is not encrypted) or 7 (key is encrypted). • – key: specifies the text string used in authentication.
no ipv6 ospf encryption null • Display the configuration of IPsec encryption policies on the router. show crypto ipsec policy • Display the security associations set up for OSPFv3 interfaces in encryption policies. show crypto ipsec sa ipv6 Configuring IPSec Authentication for an OSPFv3 Area To configure, remove, or display IPSec authentication for an OSPFv3 area, use the following commands.
• Enable IPsec encryption for OSPFv3 packets in an area. CONF-IPV6-ROUTER-OSPF mode area area-id encryption ipsec spi number esp encryption-algorithm [key-encryption-type] key authentication-algorithm [key-authentication-type] key – area area-id: specifies the area for which OSPFv3 traffic is to be encrypted. For area-id, enter a number or an IPv6 prefix. – spi number: is the security policy index (SPI) value. The range is from 256 to 4294967295.
Crypto IPSec client security policy data Policy name Policy refcount Inbound ESP SPI Outbound ESP SPI Inbound ESP Auth Key Outbound ESP Auth Key Inbound ESP Cipher Key Outbound ESP Cipher Key Transform set : : : : : : : : : OSPFv3-1-502 1 502 (0x1F6) 502 (0x1F6) 123456789a123456789b123456789c12 123456789a123456789b123456789c12 123456789a123456789b123456789c123456789d12345678 123456789a123456789b123456789c123456789d12345678 esp-3des esp-md5-hmac Crypto IPSec client security policy data Policy name Policy
• show ipv6 routes Viewing Summary Information To get general route, configuration, links status, and debug information, use the following commands. • View the summary information of the IPv6 routes. EXEC Privilege mode show ipv6 route summary • View the summary information for the OSPFv3 database. EXEC Privilege mode show ipv6 ospf database • View the configuration of OSPFv3 neighbors. EXEC Privilege mode show ipv6 ospf neighbor • View debug messages for all OSPFv3 interfaces.
36 Pay As You Grow The Pay As You Grow (PAYG) software feature allows you to purchase a Z9500 switch with 36 40G ports (144 10G ports) and upgrade to a larger number of ports as your networking needs grow. A Z9500 switch with a 36 40G-port license has only the ports on line card 0 enabled. See the Port Numbering figure in this section for exact port location.
In the command output, System Service Tag displays the service tag of the switch on which you enter the command. License Service Tag displays the service tag read from the license file. Current State displays the current number of licensed (usable) ports on the switch; Next Boot displays the number of licensed ports on the switch after the next reload.
After you enter the command, the current Z9500 port configuration and license status are displayed. Enter Yes at the prompt to continue the installation; for example: ??? Dell# install license ftp://122.3.12.34:/dell_license/z9500_J_Smith.xml Vendor : Dell Service Tag : XDF-5YU Product : Dell Networking Z9500 Feature(s) : 36 Ports 84 Ports 132 Ports [enabled] [enabled] [disabled] Note: You must reload the chassis to activate a license. Reloading the chassis will affect existing network traffic.
unmounting /usr/pkg (/dev/wd0i)... unmounting /boot (/dev/wd0b)... unmounting /usr (mfs:30)... unmounting /force10 (mfs:25)... unmounting /lib (mfs:22)... unmounting /f10 (mfs:19)... unmounting /tmp (mfs:12)... unmounting /kern (kernfs)... unmounting / (/dev/md0a)... done rebooting... Displaying License Information To check the status of the currently installed Z9500 license and display the number of enabled ports, use the show license command.
Product Feature(s) : Dell Networking Z9500 : 84 Ports System Service Tag : RtHvKsJ License Service Tag : RTHVKSJ Current State : HW-Port-License 132 Ports (Fo 0/0 - Fo 2/188) Next Boot : HW-Port-License 132 Ports (Fo 0/0 - Fo 2/188) ExampleDisplay of show system brief Output a Newly Installed License You can also display information on the currently If you have installed Z9500 a new license by entering but have not yet reloaded the switch, the following information is displayed. show system brief command.
37 PIM Sparse-Mode (PIM-SM) Protocol-independent multicast sparse-mode (PIM-SM) is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information The following information is necessary for implementing PIM-SM.
Refuse Multicast Traffic A host requesting to leave a multicast group sends an IGMP Leave message to the last-hop DR. If the host is the only remaining receiver for that group on the subnet, the last-hop DR is responsible for sending a PIM Prune message up the RPT to prune its branch to the RP. 1. After receiving an IGMP Leave message, the gateway removes the interface on which it is received from the outgoing interface list of the (*,G) entry.
ip multicast-routing Related Configuration Tasks The following are related PIM-SM configuration tasks. • • • • Configuring S,G Expiry Timers Configuring a Static Rendezvous Point Configuring a Designated Router Creating Multicast Boundaries and Domains Enable PIM-SM You must enable PIM-SM on each participating interface. 1. Enable multicast routing on the system. CONFIGURATION mode ip multicast-routing 2. Enable PIM-Sparse mode.
(10.87.31.5, 192.1.2.1), uptime 00:01:24, expires 00:02:26, flags: FT Incoming interface: TenGigabitEthernet 1/11, RPF neighbor 0.0.0.0 Outgoing interface list: TenGigabitEthernet 0/11 TenGigabitEthernet 0/12 TenGigabitEthernet 1/13 --More-- Configuring S,G Expiry Timers By default, S, G entries expire in 210 seconds. You can configure a global expiry time (for all [S,G] entries) or configure an expiry time for a particular entry.
Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree; every group must have an RP. • Identify an RP by the IP address of a PIM-enabled or Loopback interface. ip pim rp-address Example of Viewing an RP on a Loopback Interface Dell#sh run int loop0 ! interface Loopback 0 ip address 1.1.1.1/32 ip pim sparse-mode no shutdown Dell#sh run pim ! ip pim rp-address 1.1.1.1 group-address 224.0.0.
• Change the interval at which a router sends hello messages. INTERFACE mode ip pim query-interval seconds • Display the current value of these parameter. EXEC Privilege mode show ip pim interface Creating Multicast Boundaries and Domains A PIM domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary defined by PIM multicast border routers (PMBRs). PMBRs connect each PIM domain to the rest of the Internet.
38 PIM Source-Specific Mode (PIM-SSM) PIM source-specific mode (PIM-SSM) is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created. CONFIGURATION mode ip pim ssm-range acl-name Enabling PIM-SSM To display address ranges in the PIM-SSM range, use the show ip pim ssm-range command from EXEC Privilege mode. R1(conf)#do show run pim ! ip pim rp-address 10.11.12.
R1(conf)#do show run acl ! ip access-list standard map seq 5 permit host 239.0.0.2 ! ip access-list standard ssm seq 5 permit host 239.0.0.2 R1(conf)#ip igmp ssm-map map 10.11.5.2 R1(conf)#do show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface Mode Uptime 239.0.0.2 Vlan 300 IGMPv2-Compat 00:00:07 Member Ports: Te 1/1 239.0.0.1 Vlan 400 INCLUDE 00:00:10 Never 10.11.4.
39 Policy-based Routing (PBR) Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface.
To enable a PBR, create a redirect list. Redirect lists are defined by rules, or routing policies. You can define following parameters in routing policies or rules: • • • • • • • IP address of the forwarding router (next-hop IP address) Protocol as defined in the header Source IP address and mask Destination IP address and mask Source port Destination port TCP Flags After a redirect-list is applied to an interface, all traffic passing through it is subjected to the rules defined in the redirect-list.
Ingress and egress Hot Lock PBR allows you to add or delete new rules into an existing policy (already written into content address memory [CAM]) without disruption to traffic flow. Existing entries in CAM are adjusted to accommodate the new entries. Hot Lock PBR is enabled by default.
The below step shows a step-by-step example of how to create a rule for a redirect list by configuring: • IP address of the next-hop router in the forwarding route. • IP protocol number . • Source address with mask information. • Destination address with mask information. Creating a Rule Example: Dell(conf-redirect-list)#redirect ? A.B.C.D Forwarding router's address Dell(conf-redirect-list)#redirect 3.3.3.
PBR Exceptions (Permit) Use the command permit to create an exception to a redirect list. Exceptions are used when a forwarding decision should be based on the routing table rather than a routing policy. Dell Networking OS assigns the first available sequence number to a rule configured without a sequence number and inserts the rule into the PBR CAM region next to the existing entries. Because the order of rules is important, ensure that you configure any necessary sequence numbers.
In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are supported on a single interface. Dell Networking OS has the capability to support multiple groups on an interface for backup purposes.
Showing CAM PBR Configuration Example : Dell#show cam pbr linecard 1 port-set 0 TCP Flag: Bit 5 - URG, Bit 4 - ACK, Bit 3 - PSH, Bit 2 - RST, Bit 1 - SYN, Bit 0 - FIN Cam Port VlanID Proto Tcp Src Dst SrcIp DstIp Next-hop Egress Index Flag Port Port MAC Port ---------------------------------------------------------------------------------------------------------------06080 0 N/A IP 0x0 0 0 200.200.200.200 200.200.200.200 199.199.199.199 199.199.199.199 N/A NA 06081 0 N/A TCP 0x10 0 40 234.234.234.234 255.
Policy-based Routing (PBR)
40 Port Monitoring Port monitoring (also referred to as mirroring ) allows you to monitor ingress and/or egress traffic on specified ports. The mirrored traffic can be sent to a port to which a network analyzer is connected to inspect or troubleshoot the traffic. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
Dell Networking OS Behavior: The platform continues to mirror outgoing traffic even after an MD participating in spanning tree protocol (STP) transitions from the forwarding to blocking. Important Points to Remember • Port monitoring is supported on physical ports only; virtual local area network (VLAN) and port-channel interfaces do not support port monitoring. • The monitored (the source, [MD]) and monitoring ports (the destination, [MG]) must be on the same switch.
Examples of Port Monitoring In the following examples of port monitoring, the four source ports 0/13, 0/14, 0/15, and 0/16 belong to the same port pipe and mirror traffic to four different destinations (0/1, 0/2, 0/3, and 0/37). You cannot add another destination on the same port pipe in a monitoring session because a maximum number of four destination ports are supported on the same port pipe.
MONITOR SESSION mode source Example of Viewing Port Monitoring Configuration To display information on currently configured port-monitoring sessions, use the show monitor session command from EXEC Privilege mode.
monitor multicast-queue queue-id Dell(conf)#monitor multicast-queue 7 2. Verify information about monitor configurations.
Figure 106. Remote Port Mirroring Configuring Remote Port Mirroring Remote port mirroring requires a source session (monitored ports on different source switches), a reserved tagged VLAN for transporting mirrored traffic (configured on source, intermediate, and destination switches), and a destination session (destination ports connected to analyzers on destination switches).
• Reserved Vlan cannot have untagged ports In the reserved L2 VLAN used for remote port mirroring: • MAC address learning in the reserved VLAN is automatically disabled. • The reserved VLAN for remote port mirroring can be automatically configured in intermediate switches by using GVRP. • There is no restriction on the VLAN IDs used for the reserved remote-mirroring VLAN. Valid VLAN IDs are from 2 to 4094. The default VLAN ID is not supported.
monitor session 2 type rpm source fortyGigE 0/60 destination remote-vlan 300 direction rx source Port-channel 10 destination remote-vlan 300 direction rx no disable To display the currently configured source and destination sessions for remote port mirroring on a switch, enter the show monitor session command in EXEC Privilege mode.
Configuring the sample Source Remote Port Mirroring Dell(conf)#interface vlan 10 Dell(conf-if-vl-10)#mode remote-port-mirroring Dell(conf-if-vl-10)#tagged te 0/4 Dell(conf-if-vl-10)#exit Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source te 0/5 destination remote-vlan 10 dir rx Dell(conf-mon-sess-1)#no disable Dell(conf-mon-sess-1)#exit Dell(conf)#inte vlan 100 Dell(conf-if-vl-100)#tagged te 0/7 Dell(conf-if-vl-100)#exit Dell(conf)#interface vlan 20 Dell(conf-if-vl-20)#mode remote-port-mirro
Dell(conf-if-te-0/1)#switchport Dell(conf-if-te-0/1)#no shutdown Dell(conf-if-te-0/1)#exit Dell(conf)#interface te 0/2 Dell(conf-if-te-0/2)#switchport Dell(conf-if-te-0/2)#no shutdown Dell(conf-if-te-0/2)#exit Dell(conf)#interface vlan 10 Dell(conf-if-vl-10)#mode remote-port-mirroring Dell(conf-if-vl-10)#tagged te 0/0 Dell(conf-if-vl-10)#exit Dell(conf)#inte vlan 20 Dell(conf-if-vl-20)#mode remote-port-mirroring Dell(conf-if-vl-20)#tagged te 0/1 Dell(conf-if-vl-20)#exit Dell(conf)#interface vlan 30 Dell(con
mac access-group mac2 out no shutdown 4. Create Source RPM session as follows (port-channel 1 and port-channel 2 are LACP). Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source port-channel 1 destination remote-vlan 10 dir rx Dell(conf-mon-sess-1)#no disable 5. Show the output for the LACP.
egress traffic to be monitored. You can enter mulitple source statements in an ERPM monitoring session 4 erpm source-ip dest-ip Specify the source IP address and the destination IP address to which encapsulated mirrored traffic is sent. 5 flow-based enable ERPM to be performed on a flow-by-flow basis or if you configure a VLAN source interface. Enter no flow-based disable to disable flow-based ERPM. 6 no disable Enter the no disable command to activate the ERPM session..
41 Private VLANs (PVLAN) The private VLAN (PVLAN) feature is supported on Dell Networking OS. For syntax details about the commands described in this chapter, refer to the Private VLANs commands chapter in the Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN).
– There are two types of secondary VLAN — community VLAN and isolated VLAN. PVLAN port types include: • Community port — a port that belongs to a community VLAN and is allowed to communicate with other ports in the same community VLAN and with promiscuous ports. • Host port — in the context of a private VLAN, is a port in a secondary VLAN: – The port must first be assigned that role in INTERFACE mode. – A port assigned the host role cannot be added to a regular VLAN.
• Display primary-secondary VLAN mapping. EXEC mode or EXEC Privilege mode show vlan private-vlan mapping • Set the PVLAN mode of the selected port. INTERFACE switchport mode private-vlan {host | promiscuous | trunk} NOTE: Secondary VLANs are Layer 2 VLANs, so even if they are operationally down while primary VLANs are operationally up, Layer 3 traffic is still transmitted across secondary VLANs. NOTE: The outputs of the show arp and show vlan commands provide PVLAN data.
The following example shows the switchport mode private-vlan command on a port and on a port channel.
5. Add promiscuous ports as tagged or untagged interfaces. INTERFACE VLAN mode tagged interface or untagged interface Add PVLAN trunk ports to the VLAN only as tagged interfaces. You can enter interfaces in numeric or in range format, either comma-delimited (slot/port,port,port) or hyphenated (slot/port-port). You can only add promiscuous ports or PVLAN trunk ports to the PVLAN (no host or regular ports). 6. (OPTIONAL) Assign an IP address to the VLAN. INTERFACE VLAN mode ip address ip address 7.
CONFIGURATION mode interface vlan vlan-id 2. Enable the VLAN. INTERFACE VLAN mode no shutdown 3. Set the PVLAN mode of the selected VLAN to isolated. INTERFACE VLAN mode private-vlan mode isolated 4. Add one or more host ports to the VLAN. INTERFACE VLAN mode tagged interface or untagged interface You can enter the interfaces singly or in range format, either comma-delimited (slot/port,port,port) or hyphenated (slot/ port-port). You can only add ports defined as host to the VLAN.
Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 107. Sample Private VLAN Topology The following configuration is based on the example diagram for the Z9500: • • • • • Te 1/1 and Te 1/23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000. Te 1/25 is configured as a PVLAN trunk port, also assigned to the primary VLAN 4000. Te 1/24 and Te 1/47 are configured as host ports and assigned to the isolated VLAN, VLAN 4003.
• Te 1/3 is a promiscuous port and Te 1/25 is a PVLAN trunk port, assigned to the primary VLAN 4000. • Te 1/4-6 are host ports. Te 1/4 and Te 1/5 are assigned to the community VLAN 4001, while Te 1/6 is assigned to the isolated VLAN 4003. The result is that: • The S4810 ports would have the same intra-switch communication characteristics as described for the Z9500.
The following example shows using the show vlan private-vlan mapping command. S50-1#show vlan private-vlan mapping Private Vlan: Primary : 4000 Isolated : 4003 Community : 4001 NOTE: In the following example, notice the addition of the PVLAN codes – P, I, and C – in the left column. The following example shows viewing the VLAN status.
42 Per-VLAN Spanning Tree Plus (PVST+) Per-VLAN spanning tree plus (PVST+) is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN).
Dell Networking Term IEEE Specification Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information • The Dell Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. • The Dell Networking OS implementation of PVST+ uses IEEE 802.1s costs as the default costs (as shown in the following table). Other implementations use IEEE 802.1w costs as the default costs.
• Disable PVST+ globally. PROTOCOL PVST mode disable • Disable PVST+ on an interface, or remove a PVST+ parameter configuration. INTERFACE mode no spanning-tree pvst Example of Viewing PVST+ Configuration To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode.
The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority. To assign a bridge priority, use the following command. • Assign a bridge priority. PROTOCOL PVST mode vlan bridge-priority The range is from 0 to 61440. The default is 32768.
PROTOCOL PVST mode vlan forward-delay The range is from 4 to 30. • The default is 15 seconds. Change the hello-time parameter. PROTOCOL PVST mode vlan hello-time NOTE: With large configurations (especially those configurations with more ports), Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL PVST mode vlan max-age The range is from 6 to 40. The default is 20 seconds.
• Change the port cost of an interface. INTERFACE mode spanning-tree pvst vlan cost. The range is from 0 to 200000. • Refer to the table for the default values. Change the port priority of an interface. INTERFACE mode spanning-tree pvst vlan priority. The range is from 0 to 240, in increments of 16. The default is 128. The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown.
– Disable spanning tree on the interface (the no spanning-tree command in INTERFACE mode). – Disabling global spanning tree (the no spanning-tree command in CONFIGURATION mode). PVST+ in Multi-Vendor Networks Some non-Dell Networking systems which have hybrid ports participating in PVST+ transmit two kinds of BPDUs: an 802.1D BPDU and an untagged PVST+ BPDU. Dell Networking systems do not expect PVST+ BPDU (tagged or untagged) on an untagged port.
Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.73f7 We are the root of Vlan 5 Configured hello time 2, max age 20, forward delay 15 PVST+ Sample Configurations The following examples provide the running configurations for the topology shown in the previous illustration.
no disable vlan 200 bridge-priority 4096 Example of PVST+ Configuration (R3) interface TengigabitEthernet 3/12 no ip address switchport no shutdown ! interface TengigabitEthernet 3/22 no ip address switchport no shutdown ! interface Vlan 100 no ip address tagged TengigabitEthernet 3/12,22 no shutdown ! interface Vlan 200 no ip address tagged TengigabitEthernet 3/12,22 no shutdown ! interface Vlan 300 no ip address tagged TengigabitEthernet 3/12,22 no shutdown ! protocol spanning-tree pvst no disable vlan 30
43 Quality of Service (QoS) This chapter describes how to use and configure Quality of Service service (QoS) features on the switch. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 61.
Feature Direction Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling Strict-Priority Queueing Egress Weighted Random Early Detection Create WRED Profiles Egress Figure 111.
• • • • RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 Headers RFC 2475, An Architecture for Differentiated Services RFC 2597, Assured Forwarding PHB Group RFC 2598, An Expedited Forwarding PHB You cannot configure port-based and policy-based QoS on the same interface. Port-Based QoS Configurations You can configure the following QoS features on an interface.
ASIC adds a 4-bytes tag to received untagged frames. Though these 4-bytes are not part of the untagged frame received on the wire, they are included in the rate metering calculation resulting in metering inaccuracy. Configuring Port-Based Rate Policing If the interface is a member of a VLAN, you may specify the VLAN for which ingress packets are policed. • Rate policing ingress traffic on an interface.
Example of rate shape Command Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 112. Constructing Policy-Based QoS Configurations Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them.
Use step 1 or step 2 to start creating a Layer 3 class map. 1. Create a match-any class map. CONFIGURATION mode class-map match-any 2. Create a match-all class map. CONFIGURATION mode class-map match-all 3. Specify your match criteria. CLASS MAP mode match {ip | ipv6 | ip-any} After you create a class-map, Dell Networking OS places you in CLASS MAP mode. Match-any class maps allow up to five ACLs. Match-all class-maps allow only one ACL. 4. Link the class-map to a queue.
Use Step 1 or Step 2 to start creating a Layer 2 class map. 1. Create a match-any class map. CONFIGURATION mode class-map match-any 2. Create a match-all class map. CONFIGURATION mode class-map match-all 3. Specify your match criteria. CLASS MAP mode match mac After you create a class-map, Dell Networking OS places you in CLASS MAP mode. Match-any class maps allow up to five access-lists. Match-all class-maps allow only one. You can match against only one VLAN ID. 4. Link the class-map to a queue.
Applying DSCP and VLAN Match Criteria on a Service Queue You can configure Layer 3 class maps which contain both a Layer 3 Differentiated Services Code Point (DSCP) and IP VLAN IDs as match criteria to filter incoming packets on a service queue on the switch. To configure a Layer 3 class map to classify traffic according to both an IP VLAN ID and DSCP value, use the match ip vlan vlan-id command in class-map input configuration mode.
• Specify the order in which you want to apply ACL rules using the keyword order. order The order can range from 0 to 254. By default, all ACL rules have an order of 255. Displaying Configured Class Maps and Match Criteria To display all class-maps or a specific class map, use the following command.
When you remove the explicit “deny any” rule from all three ACLs, the CAM reflects exactly the desired classification. The following example shows correct traffic classifications. Dell#show cam layer3-qos interface tengigabitethernet 2/49 Cam Port Dscp Proto Tcp Src Dst SrcIp DstIp DSCP Queue Index Flag Port Port Marking ------------------------------------------------------------------------20416 1 18 IP 0x0 0 0 23.64.0.5/32 0.0.0.0/0 20 2 20417 1 0 IP 0x0 0 0 23.64.0.2/32 0.0.0.
Setting a DSCP Value for Egress Packets In an input QoS policy, you can set a DSCP value for egress packets based on ingress QoS classification. Set a DSCP value for egress packets based on ingress QoS classification. The 6–bits that are used for DSCP are also used to identify the queue in which traffic is buffered.
Allocating Bandwidth to Queue The switch schedules packets for egress based on Deficit Round Robin (DRR). This strategy offers a guaranteed data rate. Allocate bandwidth to queues only in terms of percentage in 4-queue and 8-queue systems. The following table shows the default bandwidth percentage for each queue. The following table lists the default bandwidth weights for each queue, and their equivalent percentage which is derived by dividing the bandwidth weight by the sum of all queue weights. Table 62.
Create a Layer 2 input policy map by specifying the keyword layer2 with the policy-map-input command. 2. After you create an input policy map, do one or more of the following: Applying a Class-Map or Input QoS Policy to a Queue Applying an Input QoS Policy to an Input Policy Map Honoring DSCP Values on Ingress Packets Honoring dot1p Values on Ingress Packets 3. Apply the input policy map to an interface.
Honoring dot1p Values on Ingress Packets Dell Networking OS honors dot1p values on ingress packets with the Trust dot1p feature. The following table specifies the queue to which the classified traffic is sent based on the dot1p value. Table 64. Default dot1p to Queue Mapping dot1p Queue ID 0 2 1 0 2 1 3 3 4 4 5 5 6 6 7 7 The dot1p value is also honored for frames on the default VLAN. For more information, refer to Priority-Tagged Frames on the Default VLAN.
• If you apply a service policy that contains an ACL to more than one interface, Dell Networking OS uses ACL optimization to conserve CAM space. The ACL optimization behavior detects when an ACL exists in the CAM rather than writing it to the CAM multiple times. • Apply an input policy map to an interface. INTERFACE mode service-policy input Specify the keyword layer2 if the policy map you are applying a Layer 2 policy map. Creating Output Policy Maps 1. Create an output policy map.
• Displaying Color Maps • Display Color Map Configuration Creating a DSCP Color Map You can create a DSCP color map to outline the differentiated services codepoint (DSCP) mappings to the appropriate color mapping (green, yellow, red) for the input traffic.
Examples for Creating a DSCP Color Map Display all DSCP color maps. Dell# show qos dscp-color-map Dscp-color-map mapONE yellow 4,7 red 20,30 Dscp-color-map mapTWO yellow 16,55 Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Displaying a DSCP Color Policy Configuration To display the DSCP color policy configuration for one or all interfaces, use the show qos dscp-color-policy {summary [interface] | detail {interface}} command in EXEC mode.
For example, to include the Preamble and SFD, type qos-rate-adjust 8. For variable length overhead fields, know the number of bytes you want to include. The default is disabled. Enabling Strict-Priority Queueing In strict-priority queuing, the system de-queues all packets from the assigned queue before servicing any other queues. You can assign strict-priority to one unicast queue, using the strict-priority command.
Figure 113. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Table 65. Pre-Defined WRED Profiles Default Profile Name Minimum Threshold Maximum Threshold Maximum Drop Rate wred_drop 0 0 100 wred_teng_y 594 5941 100 wred_teng_g 594 5941 50 wred_fortyg_y 594 5941 50 wred_fortyg_g 594 5941 25 Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile.
• If you do not configure Dell Networking OS to honor DSCP values on ingress (refer to Honoring DSCP Values on Ingress Packets), all traffic defaults to green drop precedence. • Assign a WRED profile to either yellow or green traffic. QOS-POLICY-OUT mode wred Displaying Default and Configured WRED Profiles To display the default and configured WRED profiles, use the following command. • Display default and configured WRED profiles and their threshold values.
11 12 13 14 15 16 17 Dell# MCAST MCAST MCAST MCAST MCAST MCAST MCAST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Explicit Congestion Notification Explicit Congestion Notification (ECN) enhances and extends WRED functionality by marking packets for later transmission instead of dropping them when a threshold value is exceeded. Use ECN for WRED to reduce the packet transmission rate in a congested, heavily-loaded network.
By default, all packets are marked for green handling if the rate-police and trust-diffserv commands are not used in an ingress policy map. All packets marked for red handling or “violate” are dropped. In the class map, in addition to color-marking matching packets for yellow handling, you can also configure a DSCP value for matching packets.
match ip access-group dscp_50_non_ecn set-color yellow match ip access-group dscp_50 policy-map-input pmap_dscp_40_50 service-queue 2 class-map class_dscp_40 service-queue 3 class-map class_dscp_50 The second example shows how to achieve the desired configuration by specifying ECN match criteria to classify ECN-capable packets: ip access-list standard dscp_50_ecn seq 5 permit any dscp 50 ecn 1 seq 10 permit any dscp 50 ecn 2 seq 15 permit any dscp 50 ecn 3 ip access-list standard dscp_40_ecn seq 5 permit an
When a packet reaches the device with ECN enabled for WRED, the average queue size is computed. To measure the average queue size, a weight factor is used. This weight factor is user-configurable. You can use the wred weight number command to configure the weight for the WRED average queue size. The mark probability value is the number of packets dropped when the average queue size reaches the maximum threshold value.
Queue Configuration Service-Pool Configuration WRED Threshold Relationship Q threshold = Q-T, Service pool threshold = SP-T Expected Functionality SP-T < Q-T SP based WRED, No ECN marking 1 1 0 X X Queue-based ECN marking above queue threshold. 1 X Q-T < SP-T ECN marking to shared buffer limits of the service-pool and then packets are tail dropped. SP-T < Q-T Same as above but ECN marking starts above SP-T.
where t is the time or the current instant at which average queue size is measured, t+1 is the next calculation of the average queue size, and N is the weight factor. In a topology in which network congestion varies over time, you can specify a weight to enable a smooth, seamless averaging of packets to handle the bursty nature of packets based on the previous time sampling performed. You can specify a weight value for front-end and backplane ports separately. The range of weight values is from 0 to 15.
Queue Configuration Service-Pool Configuration WRED Threshold Relationship Q threshold = Q-T Service-pool threshold = SP-T Expected Functionality Enabled Disabled N/A N/A Queue-based ECN marking above queue threshold. Enabled N/A Q-T < SP-T Enabled SP-T < Q-T ECN marking up to shared buffer limits of the service-pool and then packets are tail dropped. Same as above but ECN marking starts above SP-T.
Dell(conf) #service-pool wred weight pool0 11 pool1 4 6. Attach the ECN marking to specific queues on backplane ports with a service class. CONFIGURATION mode Dell(conf) #service-class wred ecn backplane 0,3-5,7 7. Create a service class and associate the threshold weight of the shared buffer with each of the queues on backplane. CONFIGURATION mode Dell(conf)#Service-class buffer shared-threshold-weight backplane queue0 11 queue6 4 queue7 9 8.
NOTE: The show cam-usage command provides much of the same information as the test cam-usage command, but whether a policy-map can be successfully applied to an interface cannot be determined without first measuring how many CAM entries the policy-map would consume; the test cam-usage command is useful because it provides this measurement. • Verify that there are enough available CAM entries.
Enable this utility to be able to configure the parameters for buffer statistics tracking. By default, buffer statistics tracking is disabled. 3. Use show hardware buffer-stats-snapshot resource interface interface{priority-group { id | all } | queue { ucast{id | all}{ mcast {id | all} | all} to view buffer statistics tracking resource information for a specific interface.
44 Routing Information Protocol (RIP) The Routing Information Protocol (RIP) tracks distances or hop counts to nearby routers when establishing network connections and is based on a distance-vector algorithm. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter. Protocol Overview RIP is the oldest interior gateway protocol.
Table 68. RIP Defaults Feature Default Interfaces running RIP • • Listen to RIPv1 and RIPv2 Transmit RIPv1 RIP timers • • • • update timer = 30 seconds invalid timer = 180 seconds holddown timer = 180 seconds flush timer = 240 seconds Auto summarization Enabled ECMP paths supported 16 Configuration Information By default, RIP is disabled in Dell Networking OS. To configure RIP, you must use commands in two modes: ROUTER RIP and INTERFACE.
Examples of Verifying RIP is Enabled and Viewing RIP Routes After designating networks with which the system is to exchange RIP information, ensure that all devices on that network are configured to exchange RIP information. The Dell Networking OS default is to send RIPv1 and to receive RIPv1 and RIPv2. To change the RIP version globally, use the version command in ROUTER RIP mode.
Controlling RIP Routing Updates By default, RIP broadcasts routing information out all enabled interfaces, but you can configure RIP to send or to block RIP routing information, either from a specific IP address or a specific interface. To control which devices or interfaces receive routing updates, configure a direct update to one router and configure interfaces to block RIP updates from other sources. To control the source of RIP route information, use the following commands.
redistribute ospf process-id [match external {1 | 2} | match internal] [metric value] [route-map map-name] Configure the following parameters: – process-id: the range is from 1 to 65535. – metric: the range is from 0 to 16. – map-name: the name of a configured route map. To view the current RIP configuration, use the show running-config command in EXEC mode or the show config command in ROUTER RIP mode.
ROUTER RIP mode default-information originate [always] [metric value] [route-map route-map-name] – always: Enter the keyword always to always generate a default route. – value The range is from 1 to 16. – route-map-name: The name of a configured route map. To confirm that the default route configuration is completed, use the show config command in ROUTER RIP mode.
– interface: the type, slot, and number of an interface. To view the configuration changes, use the show config command in ROUTER RIP mode. Debugging RIP The debug ip rip command enables RIP debugging. When you enable debugging, you can view information on RIP protocol changes or RIP routes. To enable RIP debugging, use the following command. • debug ip rip [interface | database | events | trigger] EXEC privilege mode Enable debugging of RIP.
RIP Configuration on Core2 The following example shows how to configure RIPv2 on a host named Core2. Example of Configuring RIPv2 on Core 2 Core 2 RIP Output The examples in the section show the core 2 RIP output. Examples of the show ip Commands to View Core 2 Information • • • To display Core 2 RIP database, use the show ip rip database command. To display Core 2 RIP setup, use the show ip route command. To display Core 2 RIP activity, use the show ip protocols command.
Sending updates every 30 seconds, next due in 17 Invalid after 180 seconds, hold down 180, flushed after 240 Output delay 8 milliseconds between packets Automatic network summarization is in effect Outgoing filter for all interfaces is Incoming filter for all interfaces is Default redistribution metric is 1 Default version control: receive version 2, send version 2 Interface Recv Send TenGigabitEthernet 2/42 2 2 TenGigabitEthernet 2/41 2 2 TenGigabitEthernet 2/31 2 2 TenGigabitEthernet 2/11 2 2 Routing for
45 Remote Monitoring (RMON) RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment. RMON monitors traffic passing through the router and segment traffic not destined for the router.
Setting the RMON Alarm To set an alarm on any MIB object, use the rmon alarm or rmon hc-alarm command in GLOBAL CONFIGURATION mode. • Set an alarm on any MIB object.
– number: assigned event number, which is identical to the eventIndex in the eventTable in the RMON MIB. The value must be an integer from 1 to 65,535 and be unique in the RMON Event Table. – log: (Optional) generates an RMON log entry when the event is triggered and sets the eventType in the RMON MIB to log or log-and-trap. Default is no log. – trap community: (Optional) SNMP community string used for this trap.
– integer: a value from 1 to 65,535 that identifies the RMON group of statistics. The value must be a unique index in the RMON History Table. – owner: (Optional) specifies the name of the owner of the RMON group of statistics. The default is a null-terminated string. – ownername: (Optional) records the name of the owner of the RMON group of statistics. – buckets: (Optional) specifies the maximum number of buckets desired for the RMON collection history group of statistics.
46 Rapid Spanning Tree Protocol (RSTP) The Rapid Spanning Tree Protocol (RSTP) is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.
• Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command. When using the range command, Dell Networking recommends limiting the range to five ports and 40 VLANs. RSTP and VLT Virtual link trunking (VLT) provides loop-free redundant topologies and does not require RSTP. RSTP can cause temporary port state blocking and may cause topology changes after link or node failures.
• Bridges block a redundant path by disabling one of the link ports. To enable RSTP globally for all Layer 2 interfaces, use the following commands. 1. Enter PROTOCOL SPANNING TREE RSTP mode. CONFIGURATION mode protocol spanning-tree rstp 2. Enable RSTP. PROTOCOL SPANNING TREE RSTP mode no disable Examples of the RSTP show Commands To disable RSTP globally for all Layer 2 interfaces, enter the disable command from PROTOCOL SPANNING TREE RSTP mode.
Configured hello time 2, max age 20, forward delay 15, max hops 0 We are the root Current root has priority 32768, Address 0001.e801.cbb4 Number of topology changes 4, last change occurred 00:02:17 ago on Te 1/26 Port 377 (TengigabitEthernet 2/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.377 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
Adding and Removing Interfaces To add and remove interfaces, use the following commands. To add an interface to the Rapid Spanning Tree topology, configure it for Layer 2 and it is automatically added. If you previously disabled RSTP on the interface using the command no spanning-tree 0 command, re-enable it using the spanning-tree 0 command. • Remove an interface from the Rapid Spanning Tree topology. no spanning-tree 0 Modifying Global Parameters You can modify RSTP parameters.
PROTOCOL SPANNING TREE RSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree rstp command from EXEC privilege mode.
Influencing RSTP Root Selection RSTP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge. To change the bridge priority, use the following command. • Assign a number as the bridge priority or designate it as the primary or secondary root. PROTOCOL SPANNING TREE RSTP mode bridge-priority priority-value – priority-value The range is from 0 to 65535.
– Disable global spanning tree (the no spanning-tree command in CONFIGURATION mode). To enable EdgePort on an interface, use the following command. • Enable EdgePort on an interface. INTERFACE mode spanning-tree rstp edge-port [bpduguard | shutdown-on-violation] Example of Verifying an EdgePort is Enabled on an Interface To verify that EdgePort is enabled on a port, use the show spanning-tree rstp command from EXEC privilege mode or the show config command from INTERFACE mode.
47 Security This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Role-Based Access Control With Role-Based Access Control (RBAC), access and authorization is controlled based on a user’s role. Users are granted permissions based on their user roles, not on their individual user ID.
flexibility in assigning permissions for each command to each role and as a result, it is easier and much more efficient to administer user rights. If a user’s role matches one of the allowed user roles for that command, then command authorization is granted. A constrained RBAC model provides for separation of duty and as a result, provides greater security than the hierarchical RBAC model.
You could also use the default authorization method list to apply to all the LINES (console port, VTY). If you do not, the following error is displayed when you attempt to enable role-based only AAA authorization. % Error: Exec authorization must be applied to more than one line to be useful, e.g. console and vty lines. Could use default authorization method list as alternative. 5. Verify the configuration has been applied to the console or VTY line.
User Roles This section describes how to create a new user role and configure command permissions and contains the following topics. • Creating a New User Role • Modifying Command Permissions for Roles • Adding and Deleting Users from a Role Creating a New User Role Instead of using the system defined user roles, you can create a new user role that best matches your organization. When you create a new user role, you can first inherit permissions from one of the system defined roles.
sysadmin myrole secadmin Exec Config Interface Line Router IP Route-map Protocol MAC. Exec Config Line Modifying Command Permissions for Roles You can modify (add or delete) command permissions for newly created user roles and system defined roles using the role mode { { { addrole | deleterole } role-name } | reset } command command in Configuration mode. NOTE: You cannot modify system administrator command permissions.
The following example allows the security administrator (secadmin) to only access 10-Gigabit Ethernett interfaces and then shows that the secadmin, highlighted in bold, can now access Interface mode. However, the secadmin can only access 10-Gigabit Ethernet interfaces.
Adding and Deleting Users from a Role To create a user name that is authenticated based on a user role, use the username name password encryption-type password role role-name command in CONFIGURATION mode. Example The following example creates a user name that is authenticated based on a user role. Dell (conf) #username john password 0 password role secadmin The following example deletes a user role.
When role-based only AAA authorization is enabled, the enable, line, and none methods are not available. Each of these three methods allows users to be authorized with either a password that is not specific to their userid or with no password at all. Because of the lack of security, these methods are not available for role-based only mode. To configure AAA authorization, use the aaa authorization exec command in CONFIGURATION mode.
accounting commands role netadmin ucraaa line vty 8 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin ucraaa line vty 9 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin ucraaa ! Configuring TACACS+ and RADIUS VSA Attributes for RBAC For RBAC and privilege levels, the Dell Networking OS RADIUS and TACACS+ implementation supports two vendor-specific options: privilege level and roles.
Configuring AAA Accounting for Roles To configure AAA accounting for roles, use the aaa accounting command in CONFIGURATION mode. aaa accounting {system | exec | commands {level | role role-name}} {name | default} {startstop | wait-start | stop-only} {tacacs+} Example of Configuring AAA Accounting for Roles The following example shows you how to configure AAA accounting to monitor commands executed by the users who have a secadmin user role.
netadmin secadmin sysadmin MAC testadmin Exec Config Interface Line Router IP Routemap Protocol MAC Exec Config Exec Config Interface Line Router IP Routemap Protocol netadmin Exec Config Interface Line Router IP Routemap Protocol MAC Displaying Role Permissions Assigned to a Command To display permissions assigned to a command, use the show role command in EXEC Privilege mode. The output displays the user role and or permission level.
Configuration Task List for AAA Accounting The following sections present the AAA accounting configuration tasks.
aaa accounting command 15 default start-stop tacacs+ System accounting can use only the default method list. Example of Configuring AAA Accounting to Track EXEC and EXEC Privilege Level Command Use In the following sample configuration, AAA accounting is set to track all usage of EXEC commands and commands on privilege level 15.
NOTE: If a console user logs in with RADIUS authentication, the privilege level is applied from the RADIUS server if the privilege level is configured for that user in RADIUS, whether you configure RADIUS authorization. Configuration Task List for AAA Authentication The following sections provide the configuration tasks.
NOTE: Dell Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH). You can create multiple method lists and assign them to different terminal lines. Enabling AAA Authentication To enable AAA authentication, use the following command. • Enable AAA authentication. CONFIGURATION mode aaa authentication enable {method-list-name | default} method1 [...
Server-Side Configuration Using AAA authentication, the switch acts as a RADIUS or TACACS+ client to send authentication requests to a TACACS+ or RADIUS server. • TACACS+ — When using TACACS+, Dell Networking sends an initial packet with service type SVC_ENABLE, and then sends a second packet with just the password. The TACACS server must have an entry for username $enable$.
“user” level. One of the commands available in Privilege level 1 is the enable command, which you can use to enter a specific privilege level. • Privilege level 0 — contains only the end, enable, and disable commands. • Privilege level 15 — the default level for the enable command, is the highest level. In this level you can access any command in Dell Networking OS. Privilege levels 2 through 14 are not configured and you can customize them for different users and access.
Configuring the Enable Password Command To configure Dell Networking OS, use the enable command to enter EXEC Privilege level 15. After entering the command, Dell Networking OS requests that you enter a password. Privilege levels are not assigned to passwords, rather passwords are assigned to a privilege level. You can always change a password for any privilege level. To change to a different privilege level, enter the enable command, then the privilege level.
enable password [level level] [encryption-mode] password Configure the optional and required parameters: • level level: specify a level from 0 to 15. Level 15 includes all levels. • encryption-type: enter 0 for plain text or 7 for encrypted text. • password: enter a string up to 32 characters long. To change only the password for the enable command, configure only the password parameter. 3. Configure level and commands for a mode or reset a command’s level.
Connected to 172.31.1.53. Escape character is '^]'.
– level-number: The level-number you wish to set. If you enter disable without a level-number, your security level is 1. Resetting a Password To reset a password on the system, follow these steps. 1. Connect to the system using a console. 2. Disconnect and reconnect the power cord on the system to cycle the power. 3. During system boot, press ESC when prompted to display the Grub Menu (see Example 1). 4.
• Access-Accept — the RADIUS server authenticates the user. • Access-Reject — the RADIUS server does not authenticate the user. If an error occurs in the transmission or reception of RADIUS packets, you can view the error by enabling the debug radius command. Transactions between the RADIUS server and the client are encrypted (the users’ passwords are not sent in plain text). RADIUS uses UDP as the transport protocol between the RADIUS server host and the client.
• Automatically execute a command. auto-command Privilege Levels Through the RADIUS server, you can configure a privilege level for the user to enter into when they connect to a session. This value is configured on the client system. • Set a privilege level. privilege level Configuration Task List for RADIUS To authenticate users using RADIUS, you must specify at least one RADIUS server so that the system can communicate with and configure RADIUS as one of your authentication methods.
• Enter LINE mode. CONFIGURATION mode line {aux 0 | console 0 | vty number [end-number]} • Enable AAA login authentication for the specified RADIUS method list. LINE mode login authentication {method-list-name | default} • This procedure is mandatory if you are not using default lists. To use the method list.
CONFIGURATION mode radius-server deadtime seconds • – seconds: the range is from 0 to 2147483647. The default is 0 seconds. Configure a key for all RADIUS communications between the system and RADIUS server hosts. CONFIGURATION mode radius-server key [encryption-type] key – encryption-type: enter 7 to encrypt the password. Enter 0 to keep the password as plain text. • – key: enter a string. The key can be up to 42 characters long. You cannot use spaces in the key.
To select TACACS+ as the login authentication method, use the following commands. 1. Configure a TACACS+ server host. CONFIGURATION mode tacacs-server host {ip-address | host} Enter the IP address or host name of the TACACS+ server. Use this command multiple times to configure multiple TACACS+ server hosts. 2. Enter a text string (up to 16 characters long) as the name of the method list you wish to use with the TACAS+ authentication method.
%SYSTEM-P:CP% SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable password authentication success on vty0 ( 10.11.9.209 ) %SYSTEM-P:CP %SEC-5-LOGOUT: Exec session is terminated for user admin on line vty0 (10.11.9.209) Dell(conf)#username angeline password angeline Dell(conf)#%SYSTEM-P:CP %SEC-5-LOGIN_SUCCESS: Login successful for user angeline on vty0 (10.11.9.209) %SYSTEM-P:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable password authentication success on vty0 ( 10.11.9.
– port port-number: the range is from 0 to 65535. Enter a TCP port number. The default is 49. – timeout seconds: the range is from 0 to 1000. Default is 10 seconds. – key key: enter a string for the key. The key can be up to 42 characters long. This key must match a key configured on the TACACS+ server host. This parameter must be the last parameter you configure. If you do not configure these optional parameters, the default global values are applied.
ssh {hostname} [-l username | -p port-number | -v {1 | 2}| -c encryption cipher | -m HMAC algorithm • • hostname is the IP address or host name of the remote device. Enter an IPv4 or IPv6 address in dotted decimal format (A.B.C.D). SSH V2 is enabled by default on all the modes. Display SSH connection information.
Example of Using SCP to Copy from an SSH Server on Another Switch The following example shows the use of SCP and SSH to copy a software image from one switch running SSH server on UDP port 99 to the local switch. Other SSH related command include: • crypto key generate : generate keys for the SSH server. • debug ip ssh : enables collecting SSH debug information. • ip scp topdir : identify a location for files used in secure copy transfer.
Examples The following example configures the time-based rekey threshold for an SSH session to 30 minutes. Dell(conf)#ip ssh rekey time 30 The following example configures the volume-based rekey threshold for an SSH session to 4096 megabytes. Dell(conf)#ip ssh rekey volume 4096 Configuring the SSH Server Cipher List To configure the cipher list supported by the SSH server, use the ip ssh server cipher cipher-list command in CONFIGURATION mode.
• hmac-md5-96 • hmac-sha1 • hmac-sha1-96 • hmac-sha2-256 • hmac-sha2-256-96 When FIPS is enabled, the default HMAC algorithm is hmac-sha1-96. Example of Configuring a HMAC Algorithm The following example shows you how to configure a HMAC algorithm list. Dell(conf)# ip ssh server mac hmac-sha1-96 Configuring the SSH Server Cipher List To configure the cipher list supported by the SSH server, use the ip ssh server cipher cipher-list command in CONFIGURATION mode.
Example of Enabling SSH Password Authentication To view your SSH configuration, use the show ip ssh command from EXEC Privilege mode. Dell(conf)#ip ssh server enable Dell(conf)#ip ssh password-authentication enable Dell# show ip ssh SSH server : enabled. SSH server version : v1 and v2. SSH server vrf : default. SSH server ciphers : 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192ctr,aes256-ctr. SSH server macs : hmac-md5,hmac-md5-96,hmac-sha1,hmac-sha1-96,hmac-sha2-256,hmacsha2-256-96.
3. Create a list of IP addresses and usernames that are permitted to SSH in a file called rhosts. Refer to the second example. 4. Copy the file shosts and rhosts to the Dell Networking system. 5. Disable password authentication and RSA authentication, if configured CONFIGURATION mode or EXEC Privilege mode no ip ssh password-authentication or no ip ssh rsa-authentication 6. Enable host-based authentication. CONFIGURATION mode ip ssh hostbased-authentication enable 7.
-l -m -p -v User name option HMAC algorithm to use (for v2 clients only) SSH server port option (default 22) SSH protocol version Troubleshooting SSH To troubleshoot SSH, use the following information. You may not bind id_rsa.pub to RSA authentication while logged in via the console. In this case, this message displays:%Error: No username set for this term. Enable host-based authentication on the server (Dell Networking system) and the client (Unix machine).
3. Assign an access class. 4. Enter a privilege level. You can assign line authentication on a per-VTY basis; it is a simple password authentication, using an access-class as authorization. Configure local authentication globally and configure access classes on a per-user basis. Dell Networking OS can assign different access classes to different users by username. Until users attempt to log in, Dell Networking OS does not know if they will be assigned a VTY line.
Example of Configuring VTY Authorization Based on MAC ACL for the Line (Per MAC Address) Dell(conf)#mac access-list standard sourcemac Dell(config-std-mac)#permit 00:00:5e:00:01:01 Dell(config-std-mac)#deny any Dell(conf)# Dell(conf)#line vty 0 9 Dell(config-line-vty)#access-class sourcemac Dell(config-line-vty)#end 722 Security
48 Service Provider Bridging Service provider bridging provides the ability to add a second VLAN ID tag in an Ethernet frame and is referred to as VLAN stacking in the Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.
Figure 116. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLAN-Stack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
Related Configuration Tasks • Configuring the Protocol Type Value for the Outer VLAN Tag • Configuring Dell Networking OS Options for Trunk Ports • Debugging VLAN Stacking • VLAN Stacking in Multi-Vendor Networks Creating Access and Trunk Ports To create access and trunk ports, use the following commands. • Access port — a port on the service provider edge that directly connects to the customer. An access port may belong to only one service provider VLAN.
The default is 9100. To display the S-Tag TPID for a VLAN, use the show running-config command from EXEC privilege mode. Dell Networking OS displays the S-Tag TPID only if it is a non-default value. Configuring Dell Networking OS Options for Trunk Ports 802.1ad trunk ports may also be tagged members of a VLAN so that it can carry single and double-tagged traffic. You can enable trunk ports to carry untagged, single-tagged, and double-tagged VLAN traffic by making the trunk port a hybrid port.
VLAN Stacking The default TPID for the outer VLAN tag is 0x9100. The system allows you to configure both bytes of the 2 byte TPID. Previous versions allowed you to configure the first byte only, and thus, the systems did not differentiate between TPIDs with a common first byte. For example, 0x8100 and any other TPID beginning with 0x81 were treated as the same TPID, as shown in the following illustration. Dell Networking OS Versions 8.2.1.
Figure 117.
Figure 118.
Figure 119. Single and Double-Tag TPID Mismatch VLAN Stacking Packet Drop Precedence VLAN stacking packet-drop precedence is supported on the switch. The drop eligible indicator (DEI) bit in the S-Tag indicates to a service provider bridge which packets it should prefer to drop when congested. Enabling Drop Eligibility Enable drop eligibility globally before you can honor or mark the DEI value. When you enable drop eligibility, DEI mapping or marking takes place according to the defaults.
Ingress Egress Access Port Trunk Port DEI Disabled DEI Enabled Retain outer tag CFI Set outer tag CFI to 0. Retain inner tag CFI Retain inner tag CFI Set outer tag CFI to 0 Set outer tag CFI to 0 To enable drop eligibility globally, use the following command. • Make packets eligible for dropping based on their DEI value. CONFIGURATION mode dei enable By default, packets are colored green, and DEI is marked 0 on egress.
Dynamic Mode CoS for VLAN Stacking One of the ways to ensure quality of service for customer VLAN-tagged frames is to use the 802.1p priority bits in the tag to indicate the level of QoS desired. When an S-Tag is added to incoming customer frames, the 802.1p bits on the S-Tag may be configured statically for each customer or derived from the C-Tag using Dynamic Mode CoS. Dynamic Mode CoS maps the C-Tag 802.1p value to a S-Tag 802.1p value. Figure 120.
Likewise, in the following configuration, packets with dot1p priority 0–3 are marked as dot1p 7 in the outer tag and queued to Queue 3. Rate policing is according to qos-policy-input 3. All other packets will have outer dot1p 0 and hence are queued to Queue 1. They are therefore policed according to qos-policy-input 1. Mapping C-Tag to S-Tag dot1p Values To map C-Tag dot1p values to S-Tag dot1p values and mark the frames accordingly, use the following commands. 1.
Figure 121. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
Figure 122. VLAN Stacking with L2PT Implementation Information • • • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs. No protocol packets are tunneled when you enable VLAN stacking. L2PT requires the default CAM profile. Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2.
3. Tunnel BPDUs the VLAN. INTERFACE VLAN mode protocol-tunnel stp Specifying a Destination MAC Address for BPDUs By default, Dell Networking OS uses a Dell Networking-unique MAC address for tunneling BPDUs. You can configure another value. To specify a destination MAC address for BPDUs, use the following command. • Overwrite the BPDU with a user-specified destination MAC address when BPDUs are tunneled across the provider network.
Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.1Q—Virtual Bridged Local Area Networks so that service providers can use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. 802.
49 sFlow sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers. Overview The Dell Networking Operating System (OS) supports sFlow version 5. sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic.
• By default, sFlow collection is supported only on data ports. If you want to enable sFlow collection through management ports, use the management egress-interface-selection and application sflow-collector commands in Configuration and EIS modes respectively. • Dell Networking OS exports all sFlow packets to the collector. A small sampling rate can equate to many exported packets. A backoff mechanism is automatically applied to reduce this amount.
• View the maximum header size of a packet. show running-config sflow Example of the show sflow command when the sflow max-header-size extended is configured globally Example of viewing the sflow max-header-size extended on an Interface Mode Example of the show running-config sflow Command sFlow Show Commands Dell Networking OS includes the following sFlow display commands.
Displaying Show sFlow on a Linecard To view sFlow statistics on a specified linecard, use the following command. • Display sFlow configuration information and statistics on the specified interface.
Back-Off Mechanism If the sampling rate for an interface is set to a very low value, the CPU can get overloaded with flow samples under high-traffic conditions. In such a scenario, a binary back-off mechanism gets triggered, which doubles the sampling-rate (halves the number of samples per second) for all interfaces. The backoff mechanism continues to double the sampling-rate until the CPU condition is cleared. This is as per sFlow version 5 draft.
If you did not enable any extended information, the show output displays the following (shown in bold).
50 Simple Network Management Protocol (SNMP) The Simple Network Management Protocol (SNMP) is designed to manage devices on IP networks by monitoring device operation, which might require administrator intervention. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd).
• • • • • Manage VLANs Using SNMP Enabling and Disabling a Port using SNMP Fetch Dynamic MAC Entries using SNMP Deriving Interface Indices Monitor Port-channels Important Points to Remember • • Typically, 5-second timeout and 3-second retry values on an SNMP server are sufficient for both LAN and WAN applications. If you experience a timeout with these values, increase the timeout value to greater than 3 seconds, and increase the retry value to greater than 2 seconds on your SNMP server.
• noauth — no password or privacy. Select this option to set up a user with no password or privacy privileges. This setting is the basic configuration. Users must have a group and profile that do not require password privileges. • auth — password privileges. Select this option to set up a user with password authentication. • priv — password and privacy privileges. Select this option to set up a user with password and privacy privileges.
Reading Managed Object Values You may only retrieve (read) managed object values if your management station is a member of the same community as the SNMP agent. Dell Networking supports RFC 4001, Textual Conventions for Internet Work Addresses that defines values representing a type of internet address. These values display for ipAddressTable objects using the snmpwalk command. There are several UNIX SNMP commands that read data. • Read the value of a single managed object.
Configuring Contact and Location Information using SNMP You may configure system contact and location information from the Dell Networking system or from the management station using SNMP. To configure system contact and location information from the Dell Networking system and from the management station using SNMP, use the following commands. • (From a Dell Networking system) Identify the system manager along with this person’s contact information (for example, an email address or phone number).
To configure the system to send SNMP notifications, use the following commands. 1. Configure the Dell Networking system to send notifications to an SNMP server. CONFIGURATION mode snmp-server host ip-address [traps | informs] [version 1 | 2c |3] [community-string] To send trap messages, enter the keyword traps. To send informational messages, enter the keyword informs. To send the SNMP version to use for notification messages, enter the keyword version.
Example of Dell Networking Enterprise-specific SNMP Traps Enabling an SNMP Agent to Notify Syslog Server Failure You can configure a network device to send an SNMP trap if an audit processing failure occurs due to loss of connectivity with the syslog server. If a connectivity failure occurs on a syslog server that is configured for reliable transmission, an SNMP trap is sent and a message is displayed on the console.
Copy Configuration Files Using SNMP To do the following, use SNMP from a remote client. • copy the running-config file to the startup-config file • copy configuration files from the Dell Networking system to a server • copy configuration files from a server to the Dell Networking system You can perform all of these tasks using IPv4 or IPv6 addresses. The examples in this section use IPv4 addresses; however, you can substitute IPv6 addresses for the IPv4 addresses in all of the examples.
MIB Object OID Object Values Description copyDestFileLocation .1.3.6.1.4.1.6027.3.5.1.1.1.1.6 1 = flash Specifies the location of destination file. 2 = slot0 • 3 = tftp 4 = ftp If copyDestFileLocation is FTP or SCP, you must specify copyServerAddress, copyUserName, and copyUserPassword. 5 = scp copyDestFileName .1.3.6.1.4.1.6027.3.5.1.1.1.1.7 Path (if the file is not in the Specifies the name of default directory) and filename. destination file. copyServerAddress .1.3.6.1.4.1.6027.3.5.1.1.1.
• -c: View the community, either public or private. • -m: View the MIB files for the SNMP command. • -r: Number of retries using the option • -t: View the timeout. • -v: View the SNMP version (either 1, 2, 2d, or 3). The following examples show the snmpset command to copy a configuration. These examples assume that: • the server OS is UNIX • you are using SNMP version 2c • the community name is public • the file f10-copy-config.
SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.2.8 = INTEGER: 3 SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.5.8 = INTEGER: 2 Copying the Startup-Config Files to the Server via FTP To copy the startup-config to the server via FTP from the UNIX machine, use the following command. Copy the startup-config to the server via FTP from the UNIX machine. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address copySrcFileType.index i 2 copyDestFileName.index s filepath/filename copyDestFileLocation.
Example of Copying a Binary File From the Server to the Startup-Configuration via FTP > snmpset -v 2c -c private -m ./f10-copy-config.mib 10.10.10.10 copySrcFileType.10 i 1 copySrcFileLocation.10 i 4 copyDestFileType.10 i 3 copySrcFileName.10 s /home/myfilename copyServerAddress.10 a 172.16.1.56 copyUserName.10 s mylogin copyUserPassword.10 s mypass Additional MIB Objects to View Copy Statistics Dell Networking provides more MIB objects to view copy statistics, as shown in the following table. Table 76.
• the server OS is UNIX • you are using SNMP version 2c • the community name is public • the file f10-copy-config.mib is in the current directory NOTE: In UNIX, enter the snmpset command for help using this command. The following examples show the command syntax using MIB object names and the same command using the object OIDs. In both cases, the same index number used in the snmpset command follows the object. The following command shows how to get a MIB object value using the object name.
MIB Object OID Description chSysCoresInstance 1.3.6.1.4.1.6027.3.25.1.2.8.1.1 Stores the indexed information about the available software core files. chSysCoresFileName 1.3.6.1.4.1.6027.3.25.1.2.8.1.2 Contains the core file names and the file paths. chSysCoresTimeCreated 1.3.6.1.4.1.6027.3.25.1.2.8.1.3 Contains the time at which core files are created. chSysCoresStackUnitNumber 1.3.6.1.4.1.6027.3.25.1.2.8.1.
Assigning a VLAN Alias Write a character string to the dot1qVlanStaticName object to assign a name to a VLAN. Example of Assigning a VLAN Alias using SNMP [Unix system output] > snmpset -v2c -c mycommunity 10.11.131.185 .1.3.6.1.2.1.17.7.1.4.3.1.1.1107787786 s "My VLAN" SNMPv2-SMI::mib-2.17.7.1.4.3.1.1.
Example of Adding a Tagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as a tagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 .1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 x "40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" .1.3.6.1.2.1.17.7.1.4.3.1.4.
snmpset with descriptor: snmpset -v version -c community agent-ip ifAdminStatus.ifindex i {1 | 2} snmpset with OID: snmpset -v version -c community agent-ip .1.3.6.1.2.1.2.2.1.7.ifindex i {1 | 2} Choose integer 1 to change the admin status to Up, or 2 to change the admin status to Down. Fetch Dynamic MAC Entries using SNMP Dell Networking supports the RFC 1493 dot1d table for the default VLAN and the dot1q table for all other VLANs. NOTE: The 802.1q Q-BRIDGE MIB defines VLANs regarding 802.1d, as 802.
Deriving Interface Indices The Dell Networking OS assigns an interface index to each (configured and unconfigured) physical and logical interface, and displays it in the output of the show interface command.
Table 80. MIB Objects for Viewing the System Image on Flash Partitions MIB Object OID Description MIB chSysSwInPartitionAImgVers 1.3.6.1.4.1.6027.3.10.1.2.8.1.11 List the version string of the Chassis MIB system image in Flash Partition A. chSysSwInPartitionBImgVers 1.3.6.1.4.1.6027.3.10.1.2.8.1.12 List the version string of the Chassis MIB system image in Flash Partition B.
Troubleshooting SNMP Operation When you use SNMP to retrieve management data from an SNMP agent on a Dell Networking router, take into account the following behavior. • When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the output for echo replies may be incorrectly displayed. To correctly display this information under ICMP statistics, use the show ip traffic command.
51 Storm Control Storm control allows you to control unknown-unicast, muticast, and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports unknown-unicast, muticast, and broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic. To view the storm control broadcast configuration show storm-control broadcast | multicast | unknownunicast | pfc-llfc[interface] command.
storm-control broadcast packets_per_second in • Configure the packets per second of multicast traffic allowed on C-Series or S-Series interface (ingress only) network only. INTERFACE mode storm-control multicast packets_per_second in • Shut down the port if it receives the PFC/LLFC packets more than the configured rate. INTERFACE mode storm-control pfc-llfc pps in shutdown NOTE: PFC/LLFC storm control enabled interface disables the interfaces if it receives continuous PFC/LLFC packets.
52 Spanning Tree Protocol (STP) The spanning tree protocol (STP) is supported on Dell Networking OS. Protocol Overview STP is a Layer 2 protocol — specified by IEEE 802.1d — that eliminates loops in a bridged topology by enabling only a single path through the network. By eliminating loops, the protocol improves scalability in a large network and allows you to implement redundant paths, which can be activated after the failure of active paths.
• All ports in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the spanning tree topology at the time you enable the protocol. • To add interfaces to the spanning tree topology after you enable STP, enable the port and configure it for Layer 2 using the switchport command. • The IEEE Standard 802.1D allows 8 bits for port ID and 8 bits for priority. The 8 bits for port ID provide port IDs for 256 ports.
INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. Dell(conf-if-te-1/1)#show config ! interface TenGigabitEthernet 1/1 no ip address switchport no shutdown Dell(conf-if-te-1/1)# Enabling Spanning Tree Protocol Globally Enable the spanning tree protocol globally; it is not enabled by default.
protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
Table 82.
The default values are listed in Modifying Global Parameters. To change the port cost or priority of an interface, use the following commands. • Change the port cost of an interface. INTERFACE mode spanning-tree 0 cost cost The range is from 0 to 65535. • The default values are listed in Modifying Global Parameters. Change the port priority of an interface. INTERFACE mode spanning-tree 0 priority priority-value The range is from 0 to 15. The default is 8.
Prevent Network Disruptions with BPDU Guard Configure the Portfast (and Edgeport, in the case of RSTP, PVST+, and MSTP) feature on ports that connect to end stations. End stations do not generate BPDUs, so ports configured with Portfast/ Edgport (edgeports) do not expect to receive BDPUs. If an edgeport does receive a BPDU, it likely means that it is connected to another part of the network, which can negatively affect the STP topology.
Figure 125. Enabling BPDU Guard Dell Networking OS Behavior: BPDU guard and BPDU filtering both block BPDUs, but are two separate features. BPDU guard: • is used on edgeports and blocks all traffic on edgeport if it receives a BPDU. • drops the BPDU after it reaches the RP and generates a console message.
Interface IP-Address OK Method Status Protocol TenGigabitEthernet 1/7 unassigned YES Manual up up Selecting STP Root The STP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it becomes the root bridge. You can also specify that a bridge is the root or the secondary root. To change the bridge priority or specify that a bridge is the root or secondary root, use the following command.
Figure 126. STP Root Guard Prevents Bridging Loops Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • Root guard is supported on any STP-enabled port or port-channel interface.
– mstp: enables root guard on an MSTP-enabled port. – rstp: enables root guard on an RSTP-enabled port. – pvst: enables root guard on a PVST-enabled port. To disable STP root guard on a port or port-channel interface, use the no spanning-tree 0 rootguard command in an interface configuration mode. To verify the STP root guard configuration on a port or port-channel interface, use the show spanning-tree 0 guard [interface interface] command in a global configuration mode.
Figure 127. STP Loop Guard Prevents Forwarding Loops Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis. The following conditions apply to a port enabled with loop guard: • Loop guard is supported on any STP-enabled port or port-channel interface.
– If a BPDU is received from a remote device, BPDU guard places the port in an Err-Disabled Blocking state and no traffic is forwarded on the port. – If no BPDU is received from a remote device, loop guard places the port in a Loop-Inconsistent Blocking state and no traffic is forwarded on the port. • When used in a PVST+ network, STP loop guard is performed per-port or per-port channel at a VLAN level.
53 SupportAssist SupportAssist sends troubleshooting data securely to Dell. SupportAssist in this Dell Networking OS release does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports. SupportAssist requires Dell Networking OS 9.9(0.0) and SmartScripts 9.7 or later to be installed on the Dell Networking device. Figure 128.
support-assist activate Dell(conf)#support-assist activate This command guides you through steps to configure SupportAssist. Configuring SupportAssist Manually To manually configure SupportAssist service, use the following commands. 1. Accept the end-user license agreement (EULA). CONFIGURATION mode eula-consent {support-assist} {accept | reject} NOTE: Once accepted, you do not have to accept the EULA again. Dell(conf)# eula-consent support-assist accept I accept the terms of the license agreement.
support-assist Dell(conf)#support-assist Dell(conf-supportassist)# 3. (Optional) Configure the contact information for the company. SUPPORTASSIST mode contact-company name {company-name}[company-next-name] ... [company-next-name] Dell(conf)#support-assist Dell(conf-supportassist)#contact-company name test Dell(conf-supportassist-cmpy-test)# 4. (Optional) Configure the contact name for an individual.
[no] activity {full-transfer} Dell(conf-supportassist)#activity full-transfer Dell(conf-supportassist-act-full-transfer)# 2. Copy an action-manifest file for an activity to the system. SUPPORTASSIST ACTIVITY mode action-manifest get tftp | ftp | flash Dell(conf-supportassist-act-full-transfer)#action-manifest get tftp://10.0.0.1/test file Dell(conf-supportassist-act-full-transfer)# The custom action-manifest file is a JSON file.
[no] enable Dell(conf-supportassist-act-full-transfer)#enable Dell(conf-supportassist-act-full-transfer)# Configuring SupportAssist Company SupportAssist Company mode allows you to configure name, address and territory information of the company. SupportAssist Company configurations are optional for the SupportAssist service. To configure SupportAssist company, use the following commands. 1. Configure the contact information for the company.
[no] email-address primary email-address [alternate email-address] Dell(conf-supportassist-pers-john_doe)#email-address primary jdoe@mycompany.com Dell(conf-supportassist-pers-john_doe)# 3. Configure phone numbers of the contact person. SUPPORTASSIST PERSON mode [no] phone primary phone [alternate phone] Dell(conf-supportassist-pers-john_doe)#phone primary +919999999999 Dell(conf-supportassist-pers-john_doe)# 4. Configure the preferred method for contacting the person.
SUPPORTASSIST SERVER mode [no] url uniform-resource-locator Dell(conf-supportassist-serv-default)#url https://192.168.1.1/index.htm Dell(conf-supportassist-serv-default)# Viewing SupportAssist Configuration To view the SupportAssist configurations, use the following commands. 1. Display information on SupportAssist feature status including any activities, status of communication, last time communication sent, and so on.
Additional information about the SupportAssist EULA is as follows: By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
54 System Time and Date System time and date settings and the network time protocol (NTP) are supported on Dell Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. The Dell Networking OS supports reaching an NTP server through different VRFs. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
Dell Networking OS synchronizes with a time-serving host to get the correct time. You can set Dell Networking OS to poll specific NTP time-serving hosts for the current time. From those time-serving hosts, the system chooses one NTP host with which to synchronize and serve as a client to the NTP host. As soon as a host-client relationship is established, the networking device propagates the time information throughout its local network.
• Specify the NTP server to which the Dell Networking system synchronizes. CONFIGURATION mode ntp server ip-address Examples of Viewing System Clock To display the system clock state with respect to NTP, use the show ntp status command from EXEC Privilege mode. R6_E300(conf)#do show ntp status Clock is synchronized, stratum 2, reference is 192.168.1.1 frequency is -369.623 ppm, stability is 53.319 ppm, precision is 4294967279 reference time is CD63BCC2.0CBBD000 (16:54:26.
• Configure a source IP address for NTP packets. CONFIGURATION mode ntp source interface Enter the following keywords and slot/port or number information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383.
ntp server [vrf] {hostname | ipv4-address |ipv6-address} [ key keyid] [prefer] [version number] Configure the IP address of a server and the following optional parameters: • – vrf-name : Enter the name of the VRF through which the NTP server is reachable. – hostname : Enter the keyword hostname to see the IP address or host name of the remote device. – ipv4-address : Enter an IPv4 address in dotted decimal format (A.B.C.D).
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Setting the Time and Date for the Switch Software Clock You can change the order of the month and day parameters to enter the time and date as time day month year. You cannot delete the software clock. The software clock runs only when the software is up. The clock restarts, based on the hardware clock, when the switch reboots. To set the software clock, use the following command. • Set the system software clock to the current time and date.
Setting Daylight Saving Time Once Set a date (and time zone) on which to convert the switch to daylight saving time on a one-time basis. To set the clock for daylight savings time once, use the following command. • Set the clock to the appropriate timezone and daylight saving time. CONFIGURATION mode clock summer-time time-zone date start-month start-day start-year start-time end-month end-day end-year end-time [offset] – time-zone: enter the three-letter name for the time zone.
* last: Enter the keyword last to start daylight saving time in the last week of the month. – start-month: Enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. – start-day: Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. – start-year: Enter a four-digit number as the year. The range is from 1993 to 2035.
55 Tunneling Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, open shortest path first (OSPF) v2, and OSPFv3 are supported. Internet control message protocol (ICMP) error relay, PATH MTU transmission, and fragmented packets are not supported. Configuring a Tunnel You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode.
Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.1/24 Dell(conf-if-tu-3)#ipv6 address 3::1/64 Dell(conf-if-tu-3)#no shutdown Dell(conf-if-tu-3)#show config ! interface Tunnel 3 ip address 3.1.1.1/24 ipv6 address 3::1/64 tunnel destination 8::9 tunnel source 5::5 tunnel mode ipv6 no shutdown Configuring Tunnel Keepalive Settings You can configure a tunnel keepalive target, keepalive interval, and attempts.
Dell(conf-if-tu-1)#ipv6 unnumbered tengigabitethernet 1/1 Dell(conf-if-tu-1)#tunnel source 40.1.1.1 Dell(conf-if-tu-1)#tunnel mode ipip decapsulate-any Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#show config ! interface Tunnel 1 ip unnumbered TenGigabitEthernet 1/1 ipv6 unnumbered TenGigabitEthernet 1/1 tunnel source 40.1.1.
no shutdown Guidelines for Configuring Multipoint Receive-Only Tunnels • You can configure up to eight remote end-points for a multipoint receive-only tunnel. The maximum number of remote endpoints supported for all multipoint receive-only tunnels on the switch depends on the hardware table size to setup termination. • The IP MTU configured on the physical interface determines how multiple nested encapsulated packets are handled in a multipoint receive-only tunnel.
56 Upgrade Procedures To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://www.dell.
57 Uplink Failure Detection (UFD) Uplink failure detection (UFD) provides detection of the loss of upstream connectivity and, if used with network interface controller (NIC) teaming, automatic recovery from a failed link. Feature Description A switch provides upstream connectivity for devices, such as servers. If a switch loses its upstream connectivity, downstream devices also lose their connectivity.
Figure 130. Uplink Failure Detection How Uplink Failure Detection Works UFD creates an association between upstream and downstream interfaces. The association of uplink and downlink interfaces is called an uplink-state group. An interface in an uplink-state group can be a physical interface or a port-channel (LAG) aggregation of physical interfaces. An enabled uplink-state group tracks the state of all assigned upstream interfaces.
Figure 131. Uplink Failure Detection Example If only one of the upstream interfaces in an uplink-state group goes down, a specified number of downstream ports associated with the upstream interface are put into a Link-Down state. You can configure this number and is calculated by the ratio of the upstream port bandwidth to the downstream port bandwidth in the same uplink-state group.
• If one of the upstream interfaces in an uplink-state group goes down, either a user-configurable set of downstream ports or all the downstream ports in the group are put in an Operationally Down state with an UFD Disabled error. The order in which downstream ports are disabled is from the lowest numbered port to the highest.
NOTE: Downstream interfaces in an uplink-state group are put into a Link-Down state with an UFD-Disabled error message only when all upstream interfaces in the group go down. To revert to the default setting, use the no downstream disable links command. 4. (Optional) Enable auto-recovery so that UFD-disabled downstream ports in the uplink-state group come up when a disabled upstream port in the group comes back up.
Example of Syslog Messages Before and After Entering the clear ufd-disable uplink-state-group Command (S50) The following example message shows the Syslog messages that display when you clear the UFD-Disabled state from all disabled downstream interfaces in an uplink-state group by using the clear ufd-disable uplink-state-group group-id command. All downstream interfaces return to an operationally up state.
– For a port channel interface, enter the keywords port-channel then a number. • If a downstream interface in an uplink-state group is disabled (Oper Down state) by uplink-state tracking because an upstream port is down, the message error-disabled[UFD] displays in the output. Display the current configuration of all uplink-state groups or a specified group.
ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:25:46 Queueing strategy: fifo Input Statistics: 0 packets, 0 bytes 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 0 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics: 0 packets, 0 bytes, 0 underruns 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkt
upstream TenGigabitEthernet 1/3-4 Dell(conf-uplink-state-group-3)# Dell(conf-uplink-state-group-3)#exit Dell(conf)#exit Dell# 00:13:06: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from console by console Dell# show running-config uplink-state-group ! uplink-state-group 3 description Testing UFD feature downstream disable links 2 downstream TenGigabitEthernet 1/1-2,5,9,11-12 upstream TenGigabitEthernet 1/3-4 Dell# show uplink-state-group 3 Uplink State Group: 3 Status: Enabled, Up Dell# show uplink-state-grou
58 Virtual LANs (VLANs) Virtual LANs (VLANs) are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The system supports up to 4093 portbased VLANs and one default VLAN, as specified in IEEE 802.1Q.
NOTE: You cannot assign an IP address to the Default VLAN. To assign an IP address to a VLAN that is currently the Default VLAN, create another VLAN and assign it to be the Default VLAN. For more information about assigning IP addresses, refer to Assigning an IP Address to a VLAN. • Untagged interfaces must be part of a VLAN. To remove an untagged interface from the Default VLAN, create another VLAN and place the interface into that VLAN.
• The VLAN protocol identifier identifies the frame as tagged according to the IEEE 802.1Q specifications (2 bytes). • Tag control information (TCI) includes the VLAN ID (2 bytes total). The VLAN ID can have 4,096 values, but two are reserved. NOTE: The insertion of the tag header into the Ethernet frame increases the size of the frame to more than the 1,518 bytes as specified in the IEEE 802.3 standard. Some devices that are not compliant with IEEE 802.3 may not support the larger frame size.
Assigning Interfaces to a VLAN You can only assign interfaces in Layer 2 mode to a VLAN using the tagged and untagged commands. To place an interface in Layer 2 mode, use the switchport command. You can further designate these Layer 2 interfaces as tagged or untagged. For more information, refer to the Interfaces chapter and Configuring Layer 2 (Data Link) Mode.
NUM Status Q * 1 Inactive 2 Active T T 3 Active T T 4 Active T Ports Po1(So 0/0-1) Te 1/1 Po1(So 0/0-1) Te 1/2 Po1(So 0/0-1) When you remove a tagged interface from a VLAN (using the no tagged interface command), it remains tagged only if it is a tagged interface in another VLAN. If the tagged interface is removed from the only VLAN to which it belongs, the interface is placed in the Default VLAN as an untagged interface.
3 Active 4 Active T T T U Te 1/3 Po1(So 0/0-1) Te 1/1 Te 1/2 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no switchport command in INTERFACE mode. Assigning an IP Address to a VLAN VLANs are a Layer 2 feature. For two physical interfaces on different VLANs to communicate, you must assign an IP address to the VLANs to route traffic between the two interfaces.
INTERFACE mode switchport 4. Add the interface to a tagged or untagged VLAN. VLAN INTERFACE mode [tagged | untagged] Enabling Null VLAN as the Default VLAN In a Carrier Ethernet for Metro Service environment, service providers who perform frequent reconfigurations for customers with changing requirements occasionally enable multiple interfaces, each connected to a different customer, before the interfaces are fully configured.
59 Virtual Routing and Forwarding (VRF) Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 133. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Table 83. Software Features Supported on VRF Feature/Capability Support Status for Default VRF Support Status for Non-default VRF Configuration rollback for commands introduced or modified Yes No LLDP protocol on the port Yes No 802.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF sFlow Yes No VRRP on physical and logical interfaces Yes Yes VRRPV3 Yes Yes Secondary IP Addresses Yes No Following IPv6 capabilities No Basic Yes No OSPFv3 Yes Yes IS-IS Yes Yes BGP Yes Yes ACL Yes No Multicast Yes No NDP Yes Yes RAD Yes Yes Ingress/Egress Storm-Control (perinterface/global) Yes No DHCP DHCP requests are not forwarded across VRF instances.
Creating a Non-Default VRF Instance VRF is enabled by default on the switch and supports up to 64 VRF instances: 1 to 63 and the default VRF (0). Table 85. Creating a Non-Default VRF Instance Task Command Syntax Command Mode Create a non-default VRF instance by specifying a name and VRF ID number, and enter VRF configuration mode.
Table 88. View VRF Instance Information Task Command Syntax show ip vrf [vrf-name] Display the interfaces assigned to a VRF instance. To display information on all VRF instances (including the default VRF 0), do not enter a value for vrf-name. Command Mode EXEC Assigning an OSPF Process to a VRF Instance OSPF routes are supported on all VRF instances. Refer toOpen Shortest Path First (OSPFv2) for complete OSPF configuration information. Assign an OSPF process to a VRF instance .
Task Command Syntax Command Mode View VRRP command output show vrrp vrf vrf1 -----------------for the VRF vrf1 TenGigabitEthernet 1/13, IPv4 VRID: 10, Version: 2, Net: 10.1.1.1 VRF: 2 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 43, Gratuitous ARP sent: 0 Virtual MAC address: 00:00:5e:00:01:0a Virtual IP address: 10.1.1.
Table 92. Configuring a Static Route Task Command Syntax Command Mode Configure a static route that points to a management interface. management route ip-address mask managementethernet ormanagement route ipv6address prefix-length managementethernet CONFIGURATION NOTE: You can also have the management route to point to a front-end port in case of the management VRF. For example: management route 2::/64 te 0/0.
Figure 135. Setup VRF Interfaces The following example relates to the configuration shown in Figure1 and Figure 2. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet no ip address switchport no shutdown ! interface TenGigabitEthernet ip vrf forwarding blue ip address 10.0.0.1/24 no shutdown ! interface TenGigabitEthernet ip vrf forwarding orange ip address 20.0.0.
ip vrf forwarding green ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.1 network 1.0.0.0/24 area 0 network 10.0.0.
ip vrf forwarding blue ip address 1.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.2 network 11.0.0.0/24 area 0 network 1.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/1 ! router ospf 2 vrf orange router-id 2.0.0.2 network 21.0.0.
E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set C C O Destination ----------1.0.0.0/24 10.0.0.0/24 11.0.0.0/24 Gateway ------Direct, Vl 128 Direct, Te 1/1 via 1.0.0.
The following example illustrates how route leaking between two VRFs can be performed: interface TenGigabitEthernet 1/9 ip vrf forwarding VRF1 ip address 120.0.0.1/24 interface TenGigabitEthernet 1/10 ip vrf forwarding VRF2 ip address 140.0.0.1/24 ip route vrf VRF1 20.0.0.0/16 140.0.0.2 vrf VRF2 ip route vrf VRF2 40.0.0.0/16 120.0.0.
interface interface-type slot/port ip vrf forwarding vrf-shared ip address ip—address mask A non-default VRF named VRF-Shared is created and the interface 1/4 is assigned to this VRF. 2. Configure the export target in the source VRF:. ip route-export 1:1 3. Configure VRF-red. ip vrf vrf-red interface-type slot/port ip vrf forwarding VRF-red ip address ip—address mask A non-default VRF named VRF-red is created and the interface is assigned to this VRF. 4. Configure the import target in VRF-red.
The show run output for the above configuration is as follows: ip vrf ip ip ! ip vrf ip ip ! ip vrf ! ip vrf ip ip ip VRF-Red route-export route-import 2:2 1:1 VRF-Blue route-export route-import 3:3 1:1 VRF-Green VRF-shared route-export route-import route-import 1:1 2:2 3:3 Show routing tables of all the VRFs (without any route-export and route-import tags being configured) Dell# show ip route vrf VRF-Red O 11.1.1.1/32 via 111.1.1.1 110/0 C 111.1.1.
Dell# show ip route vrf VRF-Shared O 11.1.1.1/32 via VRF-Red:111.1.1.1 110/0 C 111.1.1.0/24 Direct, VRF-Red:Te 1/11 0/0 O 22.2.2.2/32 via VRF-Blue:122.2.2.2 110/0 C 122.2.2.0/24 Direct, VRF-Blue:Te 1/22 0/0 O 44.4.4.4/32 via 144.4.4.4 110/0 00:00:11 C 144.4.4.
ip vrf forwarding VRF-red ip address ip—address mask A non-default VRF named VRF-red is created and the interface is assigned to this VRF. 2. Define a route-map export_ospfbgp_protocol. Dell(config)route-map export_ospfbgp_protocol permit 10 3. Define the matching criteria for the exported routes.
O 22.2.2.2/32 00:00:11 via 122.2.2.2 O via vrf-red:144.4.4.4 0/0 00:32:36 << only OSPF and BGP leaked from VRF-red 44.4.4.4/32 110/0 Important Points to Remember • Only Active routes are eligible for leaking. For example, if VRF-A has two routes from BGP and OSPF, in which the BGP route is not active. In this scenario, the OSPF route takes precedence over BGP.
60 Virtual Link Trunking (VLT) Virtual link trunking (VLT) allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). Overview VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches and supporting a loop-free topology.
Figure 136. Example of VLT Deployment VLT on Core Switches Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode.
Figure 137. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches. • VLT interconnect (VLTi) — The link used to synchronize states between the VLT peer switches. Both ends must be on 10G or 40G interfaces.
• If you include PVST on the system, configure it before VLT. Refer to PVST Configuration. • Dell Networking strongly recommends that the VLTi (VLT interconnect) be a static LAG and that you disable LACP on the VLTi. • Ensure that the spanning tree root bridge is at the Aggregation layer. If you enable RSTP on the VLT device, refer to RSTP and VLT for guidelines to avoid traffic loss.
– In a VLT domain, the peer switches must run the same Dell Networking OS software version. – Separately configure each VLT peer switch with the same VLT domain ID and the VLT version. If the system detects mismatches between VLT peer switches in the VLT domain ID or VLT version, the VLT Interconnect (VLTi) does not activate.
– In order that the chassis backup link does not share the same physical path as the interconnect trunk, Dell Networking recommends using the management ports on the chassis and traverse an out-of-band management network. The backup link can use user ports, but not the same ports the interconnect trunk uses. – The chassis backup link does not carry control plane information or data traffic. Its use is restricted to health checks only.
– In a VLT domain, the following software features are not supported on VLT ports: 802.1x, DHCP snooping, FRRP, GVRP, ERSPAN, RSPAN, VXLAN, ingress and egress QOS. • VLT and VRRP interoperability – In a VLT domain, VRRP interoperates with virtual link trunks that carry traffic to and from access devices (refer to Overview). The VLT peers belong to the same VRRP group and are assigned master and backup roles. Each peer actively forwards L3 traffic, reducing the traffic flow over the VLT interconnect.
requiring these addresses to be re-learned. However, enabling RSTP can detect potential loops caused by non-system issues such as cabling errors or incorrect configurations. To minimize possible topology changes after link or node failure, RSTP is useful for potential loop detection. Configure RSTP using the following specifications.
The delay-restore feature waits for all saved configurations to be applied, then starts a configurable timer. After the timer expires, the VLT ports are enabled one-by-one in a controlled manner. The delay between bringing up each VLT port-channel is proportional to the number of physical members in the port-channel. The default is 90 seconds. To change the duration of the configurable timer, use the delay-restore command.
On each VLAN where the VLT peer nodes act as the first hop or last hop routers, one of the VLT peer nodes is elected as the PIM designated router. If you configured IGMP snooping along with PIM on the VLT VLANs, you must configure VLTi as the static multicast router port on both VLT peer switches. This ensures that for first hop routers, the packets from the source are redirected to the designated router (DR) if they are incorrectly hashed.
If you enable VLT unicast routing, the following actions occur: • L3 routing is enabled on any new IP address / IPv6 address configured for a VLAN interface that is up. • L3 routing is enabled on any VLAN with an admin state of up. NOTE: If the CAM is full, do not enable peer-routing. NOTE: The peer routing and peer-routing-timeout is applicable for both IPv6/ IPv4. Configuring VLT Unicast To enable and configure VLT unicast, follow these steps. 1.
• ECMP is not compatible on VLT nodes using VLT multicast. You must use a single VLAN. Configuring VLT Multicast To enable and configure VLT multicast, follow these steps. 1. Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id 2. Enable peer-routing. VLT DOMAIN mode peer-routing 3. Configure the multicast peer-routing timeout.
Preventing Forwarding Loops in a VLT Domain During the bootup of VLT peer switches, a forwarding loop may occur until the VLT configurations are applied on each switch and the primary/secondary roles are determined. To prevent the interfaces in the VLT interconnect trunk and RSTP-enabled VLT ports from entering a Forwarding state and creating a traffic loop in a VLT domain, take the following steps. 1.
NOTE: If you use a third-party ToR unit, to avoid potential problems if you reboot the VLT peers, Dell recommends using static LAGs on the VLTi between VLT peers. 2. Enable VLT and create a VLT domain ID. VLT automatically selects a system MAC address. 3. Configure a backup link for the VLT domain. 4. (Optional) Manually reconfigure the default VLT settings, such as the MAC address and VLT primary/ secondary roles. 5.
NOTE: Do not use MAC addresses such as “reserved” or “multicast.” 2. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages. VLT DOMAIN CONFIGURATION mode back-up destination {ipv4-address | ipv6-address} [interval seconds] You can optionally specify the time interval used to send hello messages. The range is from 1 to 5 seconds. 3.
4. Repeat Steps 1 to 4 on the VLT peer switch. To set an amount of time, in seconds, to delay the system from restoring the VLT port, use the delay-restore command at any time. For more information, refer to VLT Port Delayed Restoration. Configuring a VLT Port Delay Period To configure a VLT port delay period, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs from 1 to 1000. 2.
unit-id {0 | 1} To explicitly configure the default values on each peer switch, use the unit-id command. Configure a different unit ID (0 or 1) on each peer switch. Unit IDs are used for internal system operations. Use this command to minimize the time required for the VLT system to determine the unit ID assigned to each peer switch when one peer switch reboots.
Configuring a VLT VLAN Peer-Down (Optional) To configure a VLT VLAN peer-down, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2. Enter the port-channel number that acts as the interconnect trunk. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. 3.
5. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages. VLT DOMAIN CONFIGURATION mode back-up destination ip-address [interval seconds] You can optionally specify the time interval used to send hello messages. The range is from 1 to 5 seconds. 6. When you create a VLT domain on a switch, Dell Networking OS automatically creates a VLT-system MAC address used for internal system operations.
12. Add links to the eVLT port. Configure a range of interfaces to bulk configure. CONFIGURATION mode interface range {port-channel id} 13. Enable LACP on the LAN port. INTERFACE mode port-channel-protocol lacp 14. Configure the LACP port channel mode. INTERFACE mode port-channel number mode [active] 15. Ensure that the interface is active. MANAGEMENT INTERFACE mode no shutdown 16. Repeat steps 1 through 15 for the VLT peer node in Domain 1. 17. Repeat steps 1 through 15 for the first VLT node in Domain 2.
EXEC Privilege mode show running-config entity 10. Configure the VLT peer link port channel id in VLT peer 1 and VLT peer 2. EXEC mode or EXEC Privilege mode show interfaces interface 11. In the top of rack unit, configure LACP in the physical ports. EXEC Privilege mode show running-config entity 12. Verify that VLT is running. EXEC mode show vlt brief or show vlt detail 13. Verify that the VLT LAG is running in both VLT peer units.
no shutdown configuring VLT peer lag in VLT Dell-2#show running-config interface port-channel 2 ! interface Port-channel 2 no ip address switchport vlt-peer-lag port-channel 2 no shutdown Dell-2#show interfaces port-channel 2 brief Codes: L - LACP Port-channel L LAG 2 Mode L2L3 Status up Uptime 03:33:14 Ports Te 1/4 (Up) In the ToR unit, configure LACP on the physical ports.
Delay-Restore Abort Threshold Peer-Routing Peer-Routing-Timeout timer Multicast peer-routing timeout Dell# : 60 seconds : Disabled : 0 seconds : 150 seconds Verify that the VLT LAG is up in VLT peer unit.
Name ---------Po 1 Po 2 Te 1/10 Te 1/13 PortID -------128.2 128.3 128.230 128.233 Interface Name ---------Po 1 Po 2 Te 1/10 Te 1/13 Dell# Role -----Desg Desg Desg Desg Prio ---128 128 128 128 Cost -----188 2000 2000 2000 PortID -------128.2 128.3 128.230 128.233 Prio ---128 128 128 128 Sts ----------FWD(vltI) FWD(vlt) FWD FWD Cost ------188 2000 2000 2000 Cost ------0 0 0 0 Sts ----------FWD FWD FWD FWD Bridge ID PortID -------------------- -------0 90b1.1cf4.9b79 128.2 0 90b1.1cf4.9b79 128.
Configure eVLT on Peer 1. Domain_1_Peer1(conf)#interface port-channel 100 Domain_1_Peer1(conf-if-po-100)# switchport Domain_1_Peer1(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer1(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 1.
Next, configure the VLT domain and VLTi on Peer 4. Domain_2_Peer4#configure Domain_2_Peer4(conf)#interface port-channel 1 Domain_2_Peer4(conf-if-po-1)# channel-member TenGigabitEthernet 1/8-9 Domain_1_Peer4#no shutdown Domain_2_Peer4(conf)#vlt domain 200 Domain_2_Peer4(conf-vlt-domain)# peer-link port-channel 1 Domain_2_Peer4(conf-vlt-domain)# back-up destination 10.18.130.
VLT_Peer2(conf-if-vl-4001)#exit VLT_Peer2(conf)#end Verifying a VLT Configuration To monitor the operation or verify the configuration of a VLT domain, use any of the following show commands on the primary and secondary VLT switches. • Display information on backup link operation. EXEC mode • show vlt backup-link Display general status information about VLT domains currently configured on the switch.
Peer HeartBeat status: HeartBeat Timer Interval: HeartBeat Timeout: UDP Port: HeartBeat Messages Sent: HeartBeat Messages Received: Up 1 3 34998 1026 1025 Dell_VLTpeer2# show vlt backup-link VLT Backup Link ----------------Destination: Peer HeartBeat status: HeartBeat Timer Interval: HeartBeat Timeout: UDP Port: HeartBeat Messages Sent: HeartBeat Messages Received: 10.11.200.20 Up 1 3 34998 1030 1014 The following example shows the show vlt brief command.
Dell_VLTpeer2# show vlt role VLT Role ---------VLT Role: System MAC address: System Role Priority: Local System MAC address: Local System Role Priority: Secondary 00:01:e8:8a:df:bc 32768 00:01:e8:8a:df:e6 32768 The following example shows the show running-config vlt command. Dell_VLTpeer1# show running-config vlt ! vlt domain 30 peer-link port-channel 60 back-up destination 10.11.200.18 Dell_VLTpeer2# show running-config vlt ! vlt domain 30 peer-link port-channel 60 back-up destination 10.11.200.
Dell_VLTpeer2# show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 0, Address 0001.e88a.dff8 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 0, Address 0001.e88a.dff8 We are the root Configured hello time 2, max age 20, forward delay 15 Interface Designated Name PortID Prio Cost Sts Cost Bridge ID PortID ---------- -------- ---- ------- -------- - ------- ------------Po 1 128.2 128 200000 DIS 0 0 0001.e88a.dff8 128.2 Po 3 128.
G - GVRP tagged, M - Vlan-stack, H - Hyperpull tagged NUM Status Description Q Ports 10 Active U Po110(Fo 1/56) T Po100(Fo 1/48,52) Configuring Virtual Link Trunking (VLT Peer 2) Enable VLT and create a VLT domain with a backup-link VLT interconnect (VLTi). Dell_VLTpeer2(conf)#vlt domain 999 Dell_VLTpeer2(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer2(conf-vlt-domain)#back-up destination 10.11.206.23 Dell_VLTpeer2(conf-vlt-domain)#exit Configure the backup link.
Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information. NOTE: For information on VLT Failure mode timing and its impact, contact your Dell Networking representative. Table 94. Troubleshooting VLT Description Behavior at Peer Up Behavior During Run Time Bandwidth monitoring A syslog error message and an SNMP trap is generated when the VLTi bandwidth usage goes above the 80% threshold and when it drops below 80%.
Description Behavior at Peer Up Behavior During Run Time Action to Take information, refer to the Release Notes for this release. VLT LAG ID is not configured on one VLT peer A syslog error message is generated. The peer with the VLT configured remains active. A syslog error message is generated. The peer with the VLT configured remains active. Verify the VLT LAG ID is configured correctly on both VLT peers. VLT LAG ID mismatch The VLT port channel is brought down.
Keep the following points in mind when you configure VLT nodes in a PVLAN: • Configure the VLTi link to be in trunk mode. Do not configure the VLTi link to be in access or promiscuous mode. • You can configure a VLT LAG or port channel to be in trunk, access, or promiscuous port modes when you include the VLT LAG in a PVLAN. The VLT LAG settings must be the same on both the peers. If you configure a VLT LAG as a trunk port, you can associate that LAG to be a member of a normal VLAN or a PVLAN.
PVLAN Operations When One VLT Peer is Down When a VLT port moves to the Admin or Operationally Down state on only one of the VLT nodes, the VLT Lag is still considered to be up. All the PVLAN MAC entries that correspond to the operationally down VLT LAG are maintained as synchronized entries in the device. These MAC entries are removed when the peer VLT LAG also becomes inactive or a change in PVLAN configuration occurs.
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Promiscuous Promiscuous Primary Primary Yes Yes Promiscuous Access Primary Secondary No No Promiscuous Promiscuous Primary Primary Yes Yes - Secondary (Community) - Secondary (Isolated) No No Secondary (Community) Secondary (Isolated) No No • • Yes Yes Access Access Promiscuous Promiscuous Primary X Primary X Primary Primary Yes Yes - Secondary (Community) - Se
Creating a VLT LAG or a VLT VLAN 1. Configure the port channel for the VLT interconnect on a VLT switch and enter interface configuration mode CONFIGURATION mode interface port-channel id-number. Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain. NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2. Remove an IP address from the interface.
interface interface 2. Enable the port. INTERFACE mode no shutdown 3. Set the port in Layer 2 mode. INTERFACE mode switchport 4. Select the PVLAN mode. INTERFACE mode switchport mode private-vlan {host | promiscuous | trunk} • • • 5. host (isolated or community VLAN port) promiscuous (intra-VLAN communication port) trunk (inter-switch PVLAN hub port) Access INTERFACE VLAN mode for the VLAN to which you want to assign the PVLAN interfaces. CONFIGURATION mode interface vlan vlan-id 6.
3 forwarding level. VLT peer routing enables you to replace VRRP with routed VLT to route the traffic from Layer 2 access nodes. With proxy ARP, hosts can resolve the MAC address of the VLT node even when VLT node is down. If the ICL link is down when a VLT node receives an ARP request for the IP address of the VLT peer, owing to LAG-level hashing algorithm in the top-of-rack (TOR) switch, the incorrect VLT node responds to the ARP request with the peer MAC address.
VLT Nodes as Rendezvous Points for Multicast Resiliency You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. PIM uses a VLT node as the RP to distribute multicast traffic to a multicast group. Messages to join the multicast group (Join messages) and data are sent towards the RP, so that receivers can discover who the senders are and begin receiving traffic destined for the multicast group.
member port-channel port—channel ID 4. Verify the VLAN-stack configurations. EXEC Privilege show running-config Sample configuration of VLAN-stack over VLT (Peer 1) Configure VLT domain Dell(conf)#vlt domain 1 Dell(conf-vlt-domain)#peer-link port-channel 1 Dell(conf-vlt-domain)#back-up destination 10.16.151.
Configure VLAN as VLAN-Stack VLAN and add the VLT LAG as Members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack compatible Dell(conf-if-vl-50-stack)#member port-channel 10 Dell(conf-if-vl-50-stack)#member port-channel 20 Dell#show running-config interface vlan 50 ! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown Dell# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN Sample Configuration of VLAN-Stack Over VLT (Peer 2
no shutdown Dell# Configure the VLAN as VLAN-Stack VLAN and add the VLT LAG as members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack compatible Dell(conf-if-vl-50-stack)#member port-channel 10 Dell(conf-if-vl-50-stack)#member port-channel 20 Dell(conf-if-vl-50-stack)# Dell#show running-config interface vlan 50 ! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown Dell# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN V
61 VLT Proxy Gateway The Virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a Layer 3 (L3) end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, refer to Dell Networking OS Command Line Reference Guide.
Figure 140. Sample Configuration for a VLT Proxy Gateway Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable a VLT proxy gateway: • Proxy gateway is supported only for VLT; for example, across a VLT domain. • You must enable the VLT peer-routing command for the VLT proxy gateway to function.
• Dell Networking recommends the vlt-peer-mac transmit command only for square VLTs without diagonal links. • The virtual router redundancy (VRRP) protocol and IPv6 routing is not supported. • Private VLANs (PVLANs) are not supported. • When a Virtual Machine (VM) moves from one VLT domain to the another VLT domain, the VM host sends the gratuitous ARP (GARP) , which in-turn triggers a mac movement from the previous VLT domain to the newer VLT domain.
• You must have at least one link connection to each unit of the VLT domain. Following are the prerequisites for Proxy Gateway LLDP configuration: • You must globally enable LLDP. • You cannot have interface–level LLDP disable commands on the interfaces configured for proxy gateway and you must enable both transmission and reception. • You must connect both units of the remote VLT domain by the port channel member.
• The above figure shows a sample VLT Proxy gateway scenario. There are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This causes sub-optimal routing with the VLT Proxy Gateway LLDP method. For VLT Proxy Gateway to work in this scenario you must configure the VLT-peer-mac transmit command under VLT Domain Proxy Gateway LLDP mode, in both C and D (VLT domain 1) and C1 and D1 (VLT domain 2).
62 Virtual Router Redundancy Protocol (VRRP) Virtual router redundancy protocol (VRRP) is designed to eliminate a single point of failure in a statically routed network. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN).
Figure 142. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
Table 96. Recommended VRRP Advertise Intervals Recommended Advertise Interval Groups/Interface Total VRRP Groups Groups/Interface Less than 250 1 second 12 Between 250 and 450 2–3 seconds 24 Between 450 and 600 3–4 seconds 36 Between 600 and 800 4 seconds 48 Between 800 and 1000 5 seconds 84 Between 1000 and 1200 7 seconds 100 Between 1200 and 1500 8 seconds 120 VRRP Configuration By default, VRRP is not configured.
Examples of Configuring and Verifying VRRP The following examples how to configure VRRP. Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#vrrp-group 111 Dell(conf-if-te-1/1-vrid-111)# The following examples how to verify the VRRP configuration. Dell(conf-if-te-1/1)#show conf ! interface TenGigabitEthernet 1/1 ip address 10.10.10.
2. Set the master switch to VRRP protocol version 3. Dell_master_switch(conf-if-te-1/1-vrid-100)#version 3 3. Set the backup switches to version 3. Dell_backup_switch1(conf-if-te-1/1-vrid-100)#version 3 Dell_backup_switch2(conf-if-te-1/2-vrid-100)#version 3 Assign Virtual IP addresses Virtual routers contain virtual IP addresses configured for that VRRP group (VRID). A VRRP group does not transmit VRRP packets until you assign the Virtual IP address to the VRRP group.
interface TenGigabitEthernet 1/1 ip address 10.10.10.1/24 ! vrrp-group 111 priority 255 virtual-address 10.10.10.1 virtual-address 10.10.10.2 virtual-address 10.10.10.3 ! vrrp-group 222 no shutdown The following example shows the same VRRP group (VRID 111) configured on multiple interfaces on different subnets. Dell#show vrrp -----------------TenGigabitEthernet 1/1, VRID: 111, Version: 2 Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.
TenGigabitEthernet 1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 2343, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.10 Authentication: (none) -----------------TenGigabitEthernet 1/2, VRID: 111, Net: 10.10.2.1 State: Master, Priority: 125, Master: 10.10.2.
NOTE: You must configure all virtual routers in the VRRP group the same: you must configure all with preempt enabled or configure all with preempt disabled. Because preempt is enabled by default, disable the preempt function with the following command. • Prevent any BACKUP router with a higher priority from becoming the MASTER router. INTERFACE-VRID mode no preempt Examples of Disabling Preempt Re-enable preempt by entering the preempt command.
• For VRRPv3, change the advertisement centisecs interval setting. INTERFACE-VRID mode advertise-interval centisecs centisecs The range is from 25 to 4075 centisecs in units of 25 centisecs. The default is 100 centisecs. Examples of the advertise-interval Command The following example shows how to change the advertise interval using the advertise-interval command.
In addition, if you configure a VRRP group on an interface that belongs to a VRF instance and later configure object tracking on an interface for the VRRP group, the tracked interface must belong to the VRF instance. Tracking an Interface To track an interface, use the following commands. NOTE: The sum of all the costs for all tracked interfaces must be less than the configured priority of the VRRP group.
Tracked by: VRRP TenGigabitEthernet 1/8 IPv6 VRID 1 Track 3 IPv6 route 2050::/64 reachability Reachability is Up (STATIC) 5 changes, last change 00:02:16 First-hop interface is TenGigabitEthernet 1/3 Tracked by: VRRP TenGigabitEthernet 1/8 IPv6 VRID 1 The following example shows verifying the VRRP status.
vrrp delay minimum seconds This time is the gap between an interface coming up and being operational, and VRRP enabling. The seconds range is from 0 to 900. • The default is 0. Set the delay time for VRRP initialization on all the interfaces in the system configured for VRRP. INTERFACE mode vrrp delay reload seconds This time is the gap between system boot up completion and VRRP enabling. The seconds range is from 0 to 900. The default is 0.
Figure 143. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#interface tengigabitethernet 2/31 R2(conf-if-te-2/31)#ip address 10.1.1.1/24 R2(conf-if-te-2/31)#vrrp-group 99 R2(conf-if-te-2/31-vrid-99)#priority 200 R2(conf-if-te-2/31-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31-vrid-99)#no shut R2(conf-if-te-2/31)#show conf ! interface TenGigabitEthernet 2/31 ip address 10.1.1.
-----------------TenGigabitEthernet 2/31, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.3 Authentication: (none) R2# Router 3 R3(conf)#interface tengigabitethernet 3/21 R3(conf-if-te-3/21)#ip address 10.1.1.2/24 R3(conf-if-te-3/21)#vrrp-group 99 R3(conf-if-te-3/21-vrid-99)#virtual 10.1.1.
Figure 144. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
R2(conf-if-te-1/1-vrid-10)#virtual-address fe80::10 R2(conf-if-te-1/1-vrid-10)#virtual-address 1::10 R2(conf-if-te-1/1-vrid-10)#no shutdown R2(conf-if-te-1/1)#show config interface TenGigabitEthernet 1/1 ipv6 address 1::1/64 vrrp-group 10 priority 100 virtual-address fe80::10 virtual-address 1::10 no shutdown R2(conf-if-te-1/1)#end R2#show vrrp -----------------TenGigabitEthernet 1/1, IPv6 VRID: 10, Version: 3, Net:fe80::201:e8ff:fe6a:c59f VRF: 0 default-vrf State: Master, Priority: 100, Master: fe80::201:e
VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN. The following example shows a typical use case in which you create three virtualized overlay networks by configuring three VRFs in two switches. The default gateway to reach the Internet in each VRF is a static route with the next hop being the virtual IP address configured in VRRP. In this scenario, a single VLAN is associated with each VRF.
S1(conf)#interface TenGigabitEthernet 1/1 S1(conf-if-te-1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177. S1(conf-if-te-1/1-vrid-101)#priority 100 S1(conf-if-te-1/1-vrid-101)#virtual-address 10.10.1.2 S1(conf-if-te-1/1)#no shutdown ! S1(conf)#interface TenGigabitEthernet 1/2 S1(conf-if-te-1/2)#ip vrf forwarding VRF-2 S1(conf-if-te-1/2)#ip address 10.10.1.
S2(conf-if-te-1/3)#ip vrf forwarding VRF-3 S2(conf-if-te-1/3)#ip address 20.1.1.6/24 S2(conf-if-te-1/3)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S2(conf-if-te-1/3-vrid-105)#priority 100 S2(conf-if-te-1/3-vrid-105)#virtual-address 20.1.1.5 S2(conf-if-te-1/3)#no shutdown VLAN Scenario In another scenario, to connect to the LAN, VRF-1, VRF-2, and VRF-3 use a single physical interface with multiple tagged VLANs (instead of separate physical interfaces).
VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Dell#show vrrp vrf vrf2 port-channel 1 -----------------Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.
State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Vlan 400, IPv4 VRID: 10, Version: 2, Net: 20.1.1.2 VRF: 1 vrf1 State: Backup, Priority: 90, Master: 20.1.1.
Virtual IP address: 192.168.0.
63 Standards Compliance This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking OS, the system also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website. Click “Browse and search IETF documents,” enter an RFC number, and inspect the top of the resulting document for obsolescence citations to related RFCs.
RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 97. General Internet Protocols RFC# Full Name Z-Series S-Series 768 User Datagram Protocol 7.6.
RFC# Full Name S-Series/Z-Series 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 7.8.1 2842 Capabilities Advertisement with BGP-4 7.8.1 2858 Multiprotocol Extensions for BGP-4 7.8.1 2918 Route Refresh Capability for BGP-4 7.8.1 3065 Autonomous System Confederations for BGP 7.8.1 4360 BGP Extended Communities Attribute 7.8.1 4893 BGP Support for Four-octet AS Number Space 7.8.
R Full Name F C # Z-Series S-Series 11 Path MTU 91 Discovery 7.6.1 13 Network Time 0 Protocol (Version 3) 5 Specification, Implementation and Analysis 7.6.1 15 Classless Inter19 Domain Routing (CIDR): an Address Assignment and Aggregation Strategy 7.6.1 15 Clarifications and 4 Extensions for the 2 Bootstrap Protocol 7.6.1 18 Requirements for IP 12 Version 4 Routers 7.6.1 21 Dynamic Host 31 Configuration Protocol 7.6.1 2 3 3 8 Virtual Router Redundancy Protocol (VRRP) 7.6.
General IPv6 Protocols The following table lists the Dell Networking OS support per platform for general IPv6 protocols. Table 100. General IPv6 Protocols RF C# Full Name 188 6 DNS Extensions to support IP version 6 7.8.1 1981 Path MTU (Pa Discovery for rtial IP version 6 ) 7.8.1 246 Internet 0 Protocol, Version 6 (IPv6) Specification 7.8.1 246 2 (Pa rtial ) 7.8.1 IPv6 Stateless Address Autoconfigurat ion Z-Series S-Series 246 Transmission 4 of IPv6 Packets over Ethernet Networks 7.8.
RF C# Full Name Z-Series S-Series Message Protocol (ICMPv6) for the IPv6 Specification 486 Neighbor 1 Discovery for IPv6 8.3.12.0 486 IPv6 Stateless 2 Address Autoconfigurat ion 8.3.12.0 517 5 8.3.12.0 IPv6 Router Advertisement Flags Option Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 101.
Network Management The following table lists the Dell Networking OS support per platform for network management protocol. Table 102. Network Management RFC# Full Name S4810 1155 Structure and Identification of Management Information for TCP/IP-based Internets 7.6.1 1156 Management Information Base for Network Management of TCP/IP-based internets 7.6.1 1157 A Simple Network Management Protocol (SNMP) 7.6.1 1212 Concise MIB Definitions 7.6.
RFC# Full Name S4810 2570 Introduction and Applicability 7.6.1 Statements for Internet Standard Management Framework 2571 An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks 7.6.1 2572 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) 7.6.1 2574 User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3) 7.6.
RFC# Full Name S4810 S4820T Z-Series 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol 7.6.1 2819 Remote Network Monitoring Management Information Base: Ethernet Statistics Table, Ethernet History Control Table, Ethernet History Table, Alarm Table, Event Table, Log Table 7.6.1 2863 The Interfaces Group MIB 7.6.1 2865 Remote Authentication Dial In User Service (RADIUS) 7.6.
RFC# Full Name S4810 ANSI/TIA-1057 The LLDP Management Information Base extension module for TIA-TR41.4 Media Endpoint Discovery information 7.7.1 draft-grant-tacacs -02 The TACACS+ Protocol 7.6.1 draft-ietf-idr-bgp4 mib-06 Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMIv2 7.8.1 draft-ietf-isis-wgmib- 16 Management Information Base for Intermediate System to Intermediate System (IS-IS): S4820T Z-Series 9.2(0.0) 9.2(0.
RFC# Full Name S4810 S4820T Z-Series 9.2.(0.0) 9.2.(0.0) FORCE10-BGP4-V2-MIB Force10 BGP MIB (draft-ietf-idr- 7.8.1 bgp4-mibv2-05) f10–bmp-mib Force10 Bare Metal Provisioning MIB FORCE10-FIB-MIB Force10 CIDR Multipath Routes MIB (The IP Forwarding Table provides information that you can use to determine the egress port of an IP packet and troubleshoot an IP reachability issue. It reports the autonomous system of the next hop, multiple next hop support, and policy routing support) 9.2(0.
Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 103. Multicast RFC# Full Name Z-Series S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, Version 2 7.8.1 3376 Internet Group Management Protocol, Version 3 7.8.1 3569 An Overview of SourceSpecific Multicast (SSM) 7.8.
Routing Information Protocol (RIP) The following table lists the Dell Networking OS support per platform for RIP protocol. Table 105. Routing Information Protocol (RIP) RFC# Full Name S-Series 1058 Routing Information Protocol 7.8.1 2453 RIP Version 7.8.1 4191 Default Router Preferences and More-Specific Routes 8.3.12.0 MIB Location You can find Force10 MIBs under the Force10 MIBs subhead on the Documentation page of iSupport: https://www.force10networks.