User manual


DocumentMT0100P.N
©XsensTechnologiesB.V. MTiandMTxUserManualandTechnicalDocumentation
13
4.3.1 Quaternionorientationoutputmode
Aunitquaternionvectorcanbeinterpretedtorepresentsarotationaboutaunitvectornthroughanangleα.
((), ()
22
GS
qcossin)
α
α
(,,,)qqqqq=

qq=−
(, , , )
= n
Aunitquaternionitselfhasunitmagnitude,andcanbewritteninthefollowingvectorformat;
0123GS
1q =
Quaternionsareanefficient,nonsingulardescriptionof3Dorientationandaquaternionisuniqueuptosign:
Analternativerepresentationofaquaternionisasavectorwithacomplexpart,therealcomponentisthefirst
one,q
0
.
Theinverse(q
SG
)isdefinedbythecomplexconjugate()ofq
GS
.Thecomplexconjugateiseasilycalculated;
0123GS SG
qqqqqq
=−=
qq qq==xx x
Asdefined here
q
GS
rotatesavectorinthesensorcoordinatesystem(S)totheglobalreferencecoordinate
system(G).
GS GS GS SGGS S
Hence,q
SG
rotatesavectorintheglobalreferencecoordinatesystem(G)tothesensorcoordinatesystem(S),
whereq
SG
isthecomplexconjugateofq
GS
.
4.3.2 Euleranglesorientationoutputmode
Thedefinition used for'Eulerangles'here is equivalentto'roll, pitch, yaw/heading' (also known asCardan).
TheEuleranglesareof XYZEarthfixedtype(subsequentrotationaroundglobalX,YandZaxis,alsoknownas
aerospacesequence).
Theoutputdefinitioninquaternionoutputmodeis:
MTData DATA = 
MID50(0x32)
All data elements in DATA field are FLOATS (4 bytes) , unless specified otherwise by modifying the
OutputSettingDataFormatfield.
q3q2q1q0