User manual
DocumentMT0100P.N
©XsensTechnologiesB.V. MTiandMTxUserManualandTechnicalDocumentation
13
4.3.1 Quaternionorientationoutputmode
Aunitquaternionvectorcanbeinterpretedtorepresentsarotationaboutaunitvectornthroughanangleα.
((), ()
22
GS
qcossin)
α
α
(,,,)qqqqq=
qq=−
†
(, , , )
= n
Aunitquaternionitselfhasunitmagnitude,andcanbewritteninthefollowingvectorformat;
0123GS
1q =
Quaternionsareanefficient,non‐singulardescriptionof3Dorientationandaquaternionisuniqueuptosign:
Analternativerepresentationofaquaternionisasavectorwithacomplexpart,therealcomponentisthefirst
one,q
0
.
Theinverse(q
SG
)isdefinedbythecomplexconjugate(†)ofq
GS
.Thecomplexconjugateiseasilycalculated;
0123GS SG
qqqqqq
=−−−=
†
qq qq==xx x
Asdefined here
q
GS
rotatesavectorinthesensorco‐ordinatesystem(S)totheglobalreferenceco‐ordinate
system(G).
GS GS GS SGGS S
Hence,q
SG
rotatesavectorintheglobalreferenceco‐ordinatesystem(G)tothesensorco‐ordinatesystem(S),
whereq
SG
isthecomplexconjugateofq
GS
.
4.3.2 Euleranglesorientationoutputmode
Thedefinition used for'Euler‐angles'here is equivalentto'roll, pitch, yaw/heading' (also known asCardan).
TheEuler‐anglesareof XYZEarthfixedtype(subsequentrotationaroundglobalX,YandZaxis,alsoknownas
aerospacesequence).
Theoutputdefinitioninquaternionoutputmodeis:
MTData DATA =
MID50(0x32)
All data elements in DATA field are FLOATS (4 bytes) , unless specified otherwise by modifying the
OutputSettingDataFormatfield.
q3q2q1q0