Datasheet

CY8C24123A
CY8C24223A
CY8C24423A
Document Number: 38-12028 Rev. *R Page 7 of 65
Debugger
PSoC Designer has a debug environment that provides
hardware in-circuit emulation, allowing you to test the program in
a physical system while providing an internal view of the PSoC
device. Debugger commands allow you to read and program and
read and write data memory, and read and write I/O registers.
You can read and write CPU registers, set and clear breakpoints,
and provide program run, halt, and step control. The debugger
also lets you to create a trace buffer of registers and memory
locations of interest.
Online Help System
The online help system displays online, context-sensitive help.
Designed for procedural and quick reference, each functional
subsystem has its own context-sensitive help. This system also
provides tutorials and links to FAQs and an Online Support
Forum to aid the designer.
In-Circuit Emulator
A low-cost, high-functionality in-circuit emulator (ICE) is
available for development support. This hardware can program
single devices.
The emulator consists of a base unit that connects to the PC
using a USB port. The base unit is universal and operates with
all PSoC devices. Emulation pods for each device family are
available separately. The emulation pod takes the place of the
PSoC device in the target board and performs full-speed
(24 MHz) operation.
Designing with PSoC Designer
The development process for the PSoC device differs from that
of a traditional fixed-function microprocessor. The configurable
analog and digital hardware blocks give the PSoC architecture a
unique flexibility that pays dividends in managing specification
change during development and lowering inventory costs. These
configurable resources, called PSoC blocks, have the ability to
implement a wide variety of user-selectable functions. The PSoC
development process is:
1. Select user modules.
2. Configure user modules.
3. Organize and connect.
4. Generate, verify, and debug.
Select User Modules
PSoC Designer provides a library of prebuilt, pretested hardware
peripheral components called “user modules.” User modules
make selecting and implementing peripheral devices, both
analog and digital, simple.
Configure User Modules
Each user module that you select establishes the basic register
settings that implement the selected function. They also provide
parameters and properties that allow you to tailor their precise
configuration to your particular application. For example, a PWM
User Module configures one or more digital PSoC blocks, one
for each eight bits of resolution. Using these parameters, you can
establish the pulse width and duty cycle. Configure the param-
eters and properties to correspond to your chosen application.
Enter values directly or by selecting values from drop-down
menus. All of the user modules are documented in datasheets
that may be viewed directly in PSoC Designer or on the Cypress
website. These user module datasheets explain the internal
operation of the user module and provide performance specifi-
cations. Each datasheet describes the use of each user module
parameter, and other information that you may need to success-
fully implement your design.
Organize and Connect
Build signal chains at the chip level by interconnecting user
modules to each other and the I/O pins. Perform the selection,
configuration, and routing so that you have complete control over
all on-chip resources.
Generate, Verify, and Debug
When you are ready to test the hardware configuration or move
on to developing code for the project, perform the “Generate
Configuration Files” step. This causes PSoC Designer to
generate source code that automatically configures the device to
your specification and provides the software for the system. The
generated code provides APIs with high-level functions to control
and respond to hardware events at run time, and interrupt
service routines that you can adapt as needed.
A complete code development environment lets you to develop
and customize your applications in C, assembly language, or
both.
The last step in the development process takes place inside
PSoC Designer's Debugger (accessed by clicking the Connect
icon). PSoC Designer downloads the HEX image to the ICE
where it runs at full-speed. PSoC Designer debugging capabil-
ities rival those of systems costing many times more. In addition
to traditional single-step, run-to-breakpoint, and watch-variable
features, the debug interface provides a large trace buffer. It lets
you to define complex breakpoint events that include monitoring
address and data bus values, memory locations, and external
signals.