Zoom out Search Issue
IEEE SIGNAL PROCESSING MAGAZINE [163] MARCH 2015
[64] M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire, “Canoni-
cal Polyadic Decomposition with orthogonality constraints,” SIAM J. Matrix Anal.
Appl., vol. 33, no. 4, pp. 1190–1213, 2012.
[65] M. Sørensen and L. De Lathauwer, “Blind signal separation via tensor de-
composition with Vandermonde factor: Canonical polyadic decomposition,” IEEE
Trans. Signal Processing, vol. 61, no. 22, pp. 5507–5519, Nov. 2013.
[66] G. Zhou and A. Cichocki, “Canonical Polyadic Decomposition based on a
single mode blind source separation,” IEEE Signal Processing Lett.,vol.19,no.8,
pp. 523–526, 2012.
[67] L.-H. Lim and P. Comon, “Nonnegative approximations of nonnegative ten-
sors,” J. Chemomet., vol. 23, nos. 7–8, pp. 432–441, 2009.
[68] A. van der Veen and A. Paulraj, “An analytical constant modulus algorithm,”
IEEE Trans. Signal Processing,vol.44,no.5, pp. 1136–1155,1996.
[69] R. Roy and T. Kailath, “ESPRIT—estimation of signal parameters via rota-
tional invariance techniques,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, no. 7, pp. 984–995, 1989.
[70] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and
rank-
,,,RR R
N12
f approximation of higher-order tensors,” SIAM J. Matrix Anal.
Appl.,vol.21,no.4, pp. 1324–1342,2000.
[71] B. Savas and L.-H. Lim, “Quasi-Newton methods on Grassmannians and
multilinear approximations of tensors,” SIAM J. Sci. Comput.,vol.32,no.6,
pp. 3352–3393, 2010.
[72] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer, “Best low multi-
linear rank approximation of higher-order tensors, based on the Riemannian trust-
region scheme,” SIAM J. Matrix Anal. Appl.,vol.32,no.1, pp. 115–135,2011.
[73] G. Zhou and A. Cichocki, “Fast and unique Tucker decompositions via multiway
blind source separation,” Bull. Polish Acad. Sci., vol. 60, no. 3, pp. 389–407, 2012.
[74] A. Cichocki, “Generalized component analysis and blind source separation
methods for analyzing mulitchannel brain signals,” in Statistical and Process
Models for Cognitive Neuroscience and Aging. Lawrence Erlbaum Associates,
2007, pp. 201–272.
[75] M. Haardt, F. Roemer, and G. D. Galdo, “Higher-order SVD based subspace
estimation to improve the parameter estimation accuracy in multi-dimensional
harmonic retrieval problems,” IEEE Trans. Signal Processing,vol.56,no.7,
pp. 3198–3213, July 2008.
[76] A.-H. Phan and A. Cichocki, “Tensor decompositions for feature extraction and
classification of high dimensional data sets,” Nonlinear Theory Appl., IEICE,vol.1,
no. 1, pp. 37–68, 2010.
[77] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms—
Part I and II,” SIAM J. Matrix Anal. Appl. (SIMAX) Special Issue on Tensor Decom-
positions and Applications,vol.30,no.3, pp. 1022–1066,2008.
[78] L. De Lathauwer, “Blind separation of exponential polynomials and the decom-
position of a tensor in rank-
,,)(LL1
rr
terms,” SIAM J. Matrix Anal. Appl.,vol.32,
no. 4, pp. 1451–1474, 2011.
[79] L. De Lathauwer, “Block component analysis: A new concept for blind source sep-
aration,” in Proc. 10th Int. Conf. LVA/ICA, Tel Aviv, Israel, Mar. 12–15, 2012, pp. 1–8.
[80] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact sig-
nal reconstruction from highly incomplete frequency information,” IEEE Trans.
Inform. Theory,vol.52,no.2, pp. 489–509,2006.
[81] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projec-
tions: Universal encoding strategies?” IEEE Trans. Inform. Theory,vol.52,no.12,
pp. 5406–5425, 2006.
[82] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,vol.52,
no. 4, pp. 1289–1306, 2006.
[83] Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications,
vol. 20. New York: Cambridge Univ. Press, 2012, p. 12.
[84] M. F. Duarte and R. G. Baraniuk, “Kronecker compressive sensing,” IEEE
Trans. Image Processing, vol. 21, no. 2, pp. 494–504, 2012.
[85] C. Caiafa and A. Cichocki, “Computing sparse representations of multi-
dimensional signals using Kronecker bases,” Neural Computat.,vol.25,no.1,
pp. 186–220, 2013.
[86] C. Caiafa and A. Cichocki, “Multidimensional compressed sensing and their ap-
plications,” WIREs Data Mining Knowled. Discov.,vol.3,no.6, pp. 355–380,2013.
[87] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank tensor
recovery via convex optimization,” Inverse Prob.,vol.27,no.2, pp. 1–19,2011.
[88] M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. A. K. Suykens, “Learning
with tensors: A framework based on convex optimization and spectral regulariza-
tion,” Mach. Learn.,vol.94,no.3, pp. 303–351,Mar.2014.
[89] L. Sorber, M. Van Barel, and L. De Lathauwer. (2014, Jan.). Tensorlab v2.0.
[Online]. Available: www.tensorlab.net
[90] N. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing for sparse
low-rank tensors,” IEEE Signal Processing Lett., vol. 19, no. 11, pp. 757–760, 2012.
[91] D. Foster, K. Amano, S. Nascimento, and M. Foster, “Frequency of metamer-
ism in natural scenes,” J. Opt. Soc. Amer. A,vol.
23, no. 10, pp. 2359–2372, 2006.
[92] A. Cichocki, “Era of big data processing: A new approach via tensor networks
and tensor decompositions (invited talk),” in Proc. 2013 Int. Workshop on Smart
Info-Media Systems in Asia, SISA-2013, Nagoya, Japan, Oct. 1, 2013, 2013, 30
pages. [Online]. Available: http://arxiv.org/pdf/1403.2048.pdf
[93] R. Orus, “A practical introduction to tensor networks: Matrix product states
and projected entangled pair states,” J. Chem. Phys.,2013.
[94] J. Salmi, A. Richter, and V. Koivunen, “Sequential unfolding SVD for ten-
sors with applications in array signal processing,” IEEE Trans. Signal Processing,
vol. 57, no. 12, pp. 4719–4733, 2009.
[95] A.-H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale problems,”
Neurocomputing,vol.74,no.11, pp. 1970–1984,2011.
[96] S. K. Suter, M. Makhynia, and R. Pajarola, “TAMRESH: Tensor approximation
multiresolution hierarchy for interactive volume visualization,” Comput. Graph.
Forum,vol.32,no.3, pp. 151–160,2013.
[97] D. Nion and N. Sidiropoulos, “Adaptive algorithms to track the PARAFAC de-
composition of a third-order tensor,” IEEE Trans. Signal Processing,vol.57,no.6,
pp. 2299–2310, June 2009.
[98] S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, “Pseudo-skeleton
approximations by matrices of maximum volume,” Math. Notes,vol.62,no.4,
pp. 515–519, 1997.
[99] C. Caiafa and A. Cichocki, “Generalizing the column-row matrix decomposi-
tion to multi-way arrays,” Linear Algebr. Appl., vol. 433, no. 3, pp. 557–573, 2010.
[100] S. A. Goreinov, “On cross approximation of multi-index array,” Doklady
Math., vol. 420, no. 4, pp. 404–406, 2008.
[101] I. Oseledets, D. V. Savostyanov, and E. Tyrtyshnikov, “Tucker dimensionality
reduction of three-dimensional arrays in linear time,” SIAM J. Matrix Anal. Appl.,
vol. 30, no. 3, pp. 939–956, 2008.
[102] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multidimen-
sional arrays,” Linear Algebr. Appl.,vol.432,no.1, pp. 70–88,2010.
[103] M. W. Mahoney, M. Maggioni, and P. Drineas, “Tensor-CUR decompositions
for tensor-based data,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 957–987, 2008.
[104] R. Bro, “Multiway calibration. Multilinear PLS,” J. Chemomet.,vol.10,
no. 1, pp. 47–61, 1996.
[105]Q.Zhao,C.Caiafa,
D.Mandic,Z.Chao,Y.Nagasaka,N.Fujii,L.Zhang,
and A. Cichocki, “Higher-order partial least squares (HOPLS): A generalized multi-
linear regression method,” IEEE Trans. Pattern Anal. Mach. Intell. (PAMI),vol.35,
no. 7, pp. 1660–1673, 2013.
[106] A. Cichocki, “Tensors decompositions: New concepts for brain data analysis?”
J. Control, Measure., Syst. Integr. (SICE), vol. 47, no. 7, pp. 507–517, 2011.
[107] V. Calhoun, J. Liu, and T. Adali, “A review of group ICA for fMRI data and
ICA for joint inference of imaging, genetic, and ERP data,” Neuroimage,vol.45,
pp. 163–172, 2009.
[108] Y.-O. Li, T. Adali, W. Wang, and V. Calhoun, “Joint blind source separation by
multiset canonical correlation analysis,” IEEE Trans. Signal Processing,vol.57,
no. 10, pp. 3918–3929, Oct. 2009.
[109] E. Acar, T. Kolda, and D. Dunlavy, “All-at-once optimization for coupled
matrix and tensor factorizations,” in Proc. Mining and Learning with Graphs,
(MLG’11), San Diego, CA, August 2011.
[110]G.Zhou,A.Cichocki,S.Xie, and D.Mandic. (2013). Beyond canonical
correlation analysis: Common and individual features analysis. IEEE Trans.
Pattern Anal. Mach. Intell. [Online]. Available: http://arxiv.org/abs/1212.3913
[111] B. Bader, T. G. Kolda et al. (2012, Feb.). MATLAB tensor toolbox version
2.5. [Online]. Available: http://www.sandia.gov/ tgkolda/TensorToolbox/
[112] G. Zhou and A. Cichocki. (2013). TDALAB: Tensor decomposition laboratory,
LABSP, Wako-shi, Japan. [Online]. Available: http://bsp.brain.riken.jp/TDALAB/
[113] A.-H. Phan, P. Tichavský, and A. Cichocki. (2012). TENSORBOX: A MAT-
LAB package for tensor decomposition, LABSP, RIKEN, Japan. [Online]. Avail-
able: http://www.bsp.brain.riken.jp/ phan/tensorbox.php
[114] C. Andersson and R. Bro. (2000). The N-way toolbox for MATLAB. [Online].
Chemomet. Intell. Lab. Syst., 52(1), pp. 1–4, 2000. Available: http://www.
models.life.ku.dk/nwaytoolbox
[115] I. Oseledets. (2012). TT-toolbox 2.2. [Online]. Available: https://github.
com/oseledets/TT-Toolbox
[116] D. Kressner and C. Tobler. (2012). htucker—A MATLAB toolbox for tensors
in hierarchical Tucker format. MATHICSE, EPF Lausanne. [Online]. Available:
http://anchp.epfl.ch/htucker
[117]M.Espig,M.Schuster,A.Killaitis,N.Waldren,P.Wähnert,S.Hand-
schuh, and H. Auer. (2012). Tensor calculus library. [Online]. Available: http://
gitorious.org/tensorcalculus
[118] P. Kroonenberg. The three-mode company: A company devoted to creating
three-mode software and promoting three-mode data analysis. [Online]. Avail-
able: http://three-mode.leidenuniv.nl/.
[119] Z. Xu, F. Yan, and A. Qi, “Infinite Tucker decomposition: Nonparametric
Bayesian models for multiway data analysis,” in Proc. 29th Int. Conf. Machine
Learning (ICML-12), ser. ICML’12.Omnipress,July2012, pp. 1023–1030.
[120] K. Yilmaz and A. T. Cemgil, “Probabilistic latent tensor factorisation,” in
Proc. Int. Conf. Latent Variable Analysis and Signal Separation, cPCI-S,2010,
vol. 6365, pp. 346–353.
[SP]
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®
___
_______
_______________
_________________________
_______________________