Zoom out Search Issue
IEEE SIGNAL PROCESSING MAGAZINE [162] MARCH 2015
[6] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and condi-
tions for an explanatory multimodal factor analysis,” UCLA Working Pap. Phonet.,
vol. 16, pp. 1–84, 1970.
[7] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the
Chemical Sciences. Hoboken, NJ: Wiley, 2004.
[8] P. Kroonenberg, Applied Multiway Data Analysis. Hoboken, NJ: Wiley, 2008.
[9]C.Nikias and A.Petropulu,Higher-Order Spectra Analysis: A Nonlinear Sig-
nal Processing Framework.Englewood Cliffs, NJ:Prentice Hall,1993.
[10] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian sig-
nals,” in IEE Proc. F (Radar and Signal Processing),vol.140,no.6, IET, 1993,
pp. 362–370.
[11] P. Comon, “Independent component analysis: A new concept?” Signal Pro-
cess., vol. 36, no. 3, pp. 287–314, 1994.
[12] P. Comon and C. Jutten, Eds., Handbook of Blind Source Separation: Inde-
pendent Component Analysis and Applications.New York, Academic,2010.
[13] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing.
Hoboken, NJ: Wiley, 2003.
[14] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis.
New York:Wiley,2001.
[15] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1253–1278, 2000.
[16] G. Beylkin and M. Mohlenkamp, “Algorithms for numerical analysis in high
dimensions,” SIAM J. Sci. Comput.,vol.26,no.6, pp. 2133–2159,2005.
[17] J. Ballani, L. Grasedyck, and M. Kluge, “Black box approximation of tensors
in hierarchical Tucker format,” Linear Algebr. Appl.,vol.433,no.2, pp. 639–657,
2011.
[18] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,vol.33,
no. 5, pp. 2295–2317, 2011.
[19] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis in sensor ar-
ray processing,” IEEE Trans. Signal Processing, vol. 48, no. 8, pp. 2377–2388, 2000.
[20] N. Sidiropoulos, G. Giannakis, and R. Bro, “Blind PARAFAC receivers for DS-
CDMA systems,” IEEE Trans. Signal Processing,vol.48,no.3, pp. 810–823,2000.
[21] A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari, Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and
Blind Source Separation.Hoboken, NJ:Wiley,2009.
[22] J. Landsberg, Tensors: Geometry and Applications. AMS, 2012.
[23] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus (ser. Springer
series in computational mathematics). Heidelberg: Springer, 2012, vol. 42.
[24] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature sur-
vey,” IEEE Trans. Knowledge Data Eng., vol. 21, no. 1, pp. 6–20, 2009.
[25] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM Rev.,
vol. 51, no. 3, pp. 455–500, Sept. 2009.
[26] P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompositions, alter-
nating least squares and other tales,” J. Chemomet., vol. 23, no. 7–8, pp. 393–405,
2009.
[27] H. Lu, K. Plataniotis, and A. Venetsanopoulos, “A survey of multilinear subspace
learning for tensor data,” Pattern Recognit., vol. 44, no. 7, pp. 1540–1551, 2011.
[28] M. Mørup, “Applications of tensor (multiway array) factorizations and decom-
positions in data mining,” Wiley Interdisc. Rew.: Data Mining Knowled. Discov.,
vol. 1, no. 1, pp. 24–40, 2011.
[29] B. Khoromskij, “Tensors-structured numerical methods in scientific com-
puting: Survey on recent advances,” Chemomet. Intell. Lab. Syst.,vol.110,no.1,
pp. 1–19, 2011.
[30] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor
approximation techniques,” CGAMM-Mitteilungen, vol. 36, no. 1, pp. 53–78, 2013.
[31] P. Comon, “Tensors: A brief introduction,” IEEE Signal Processing Mag.,
vol. 31, no. 3, pp. 44–53, May 2014.
[32] A. Bruckstein, D. Donoho, and M. Elad, “From sparse solutions of systems
of equations to sparse modeling of signals and images,” SIAM Rev.,vol.51,no.1,
pp. 34–81, 2009.
[33] J. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics,” Linear Algebr.
Appl.,vol.18,no.2, pp. 95–138,1977.
[34] I. Domanov and L. De Lathauwer, “On the uniqueness of the canonical poly-
adic decomposition of third-order tensors—Part I: Basic results and uniqueness of
one factor matrix and part II: Uniqueness of the overall decomposition,” SIAM J.
Matrix Anal. Appl.,vol.34,no.3, pp. 855–903,2013.
[35] M. Elad, P. Milanfar, and G. H. Golub, “Shape from moments—An estimation
theory perspective,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 1814–1829,
2004.
[36] N.
Sidiropoulos, “Generalizing Caratheodory’s uniqueness of harmonic
parameterization to N dimensions,” IEEE Trans. Inform. Theory,vol.47,no.4,
pp. 1687–1690, 2001.
[37] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and É. Moulines, “A blind
source separation technique using second-order statistics,” IEEE Trans. Signal
Processing,vol.45,no.2, pp. 434–444,1997.
[38]F.Miwakeichi,E.Martnez-Montes,P.Valds-Sosa,N.Nishiyama,H.Mizu-
hara, and Y. Yamaguchi, “Decomposing EEG data into space–time–frequency
components using parallel factor analysis,” NeuroImage,vol.22,no.3, pp. 1035–
1045, 2004.
[39] M. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles:
Tensorfaces,” in Proc. European Conf. on Computer Vision (ECCV),Copenhagen,
Denmark, May 2002, vol. 2350, pp. 447–460.
[40] M. Hirsch, D. Lanman, G.Wetzstein, and R. Raskar, “Tensor displays,” in Proc.
Int. Conf. Computer Graphics and Interactive Techniques, SIGGRAPH 2012,Los
Angeles, CA, USA, Aug. 5-9, 2012, Emerging Technologies Proc.,2012, pp. 24–42.
[41] J. Ha˚stad, “Tensor rank is NP-complete,” J. Algorithms,vol.11,no.4, pp. 644–
654, 1990.
[42] M. Timmerman and H. Kiers, “Three mode principal components analysis:
Choosing the numbers of components and sensitivity to local optima,” Br. J. Math.
Stat. Psychol.,vol.53,no.1, pp. 1–16,2000.
[43] E. Ceulemans and H. Kiers, “Selecting among three-mode principal compo-
nent models of different types and complexities: A numerical convex-hull based
method,” Br. J. Math Stat Psychol.,vol.59,no.1, pp. 133–150,May2006.
[44] M. Mørup and L. K. Hansen, “Automatic relevance determination for multiway
models,” J. Chemomet., Special Issue: In Honor of Professor Richard A. Harsh-
man, vol. 23, no. 7–8, pp. 352–363, 2009.
[45] N. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decomposition
of N-way arrays,” J. Chemomet.,vol.14,no.3, pp. 229–239,2000.
[46] T. Jiang and N. D. Sidiropoulos, “Kruskal’s permutation lemma and the identi-
fication of CANDECOMP/PARAFAC and bilinear models,” IEEE Trans. Signal Pro-
cessing,vol.52,no.9, pp. 2625–2636,2004.
[47] L. De Lathauwer, “A link between the canonical decomposition in multilinear
algebra and simultaneous matrix diagonalization,” SIAM J. Matrix Anal. Appl.,vol.28,
no. 3, pp. 642–666, 2006.
[48] A. Stegeman, “On uniqueness conditions for CANDECOMP/PARAFAC and
INDSCAL with full column rank in one mode,” Linear Algebr. Appl., vol. 431, no.
1–2,
pp. 211–227, 2009.
[49] E. Sanchez and B. Kowalski, “Tensorial resolution: A direct trilinear decompo-
sition,” J. Chemomet., vol. 4, no. 1, pp. 29–45, 1990.
[50] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition of third-
order tensors: Reduction to generalized eigenvalue decomposition,” SIAM Anal.
Appl., vol. 35, no. 2, pp. 636–660, 2014.
[51] S. Vorobyov, Y. Rong, N. Sidiropoulos, and A. Gershman, “Robust iterative
fitting of multilinear models,” IEEE Trans. Signal Processing,vol.53,no.8,
pp. 2678–2689, 2005.
[52] X. Liu and N. Sidiropoulos, “Cramér-Rao lower bounds for low-rank decompo-
sition of multidimensional arrays,” IEEE Trans. Signal Processing,vol.49,no.9,
pp. 2074–2086, Sept. 2001.
[53] P. Tichavský, A.-H. Phan, and Z. Koldovský, “Cramér-Rao-induced bounds for
CANDECOMP/PARAFAC tensor decomposition,” IEEE Trans. Signal Processing,
vol. 61, no. 8, pp. 1986–1997, 2013.
[54] B. Chen, S. He, Z. Li, and S. Zhang, “Maximum block improvement and poly-
nomial optimization,” SIAM J. Optim.,vol.22,no.1, pp. 87–107,2012.
[55] A. Uschmajew, “Local convergence of the alternating least squares algorithm
for canonical tensor approximation,” SIAM J. Matrix Anal. Appl.,vol.33,no.2,
pp. 639–652, 2012.
[56] M. J. Mohlenkamp, “Musings on multilinear fitting,” Linear Algebr. Appl.,
vol. 438, no. 2, pp. 834–852, 2013.
[57] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of
block successive minimization methods for nonsmooth optimization,” SIAM J. Op-
tim., vol. 23, no. 2, pp. 1126–1153, 2013.
[58] P. Paatero, “The multilinear engine: A table-driven least squares program for
solving multilinear problems, including the n-way parallel factor analysis model,” J.
Computat. Graph. Stat.,vol.8,no.4, pp. 854–888,Dec.1999.
[59] E. Acar, D. Dunlavy, T. Kolda, and M. Mørup, “Scalable tensor factorizations
for incomplete data,” Chemomet. Intell. Lab. Syst.,vol.106,no.1, pp. 41–56,2011.
[60] A.-H. Phan, P. Tichavský, and A. Cichocki, “Low complexity damped Gauss-
Newton algorithms for CANDECOMP/PARAFAC,” SIAM J. Matrix Anal. Appl. (SI-
MAX), vol. 34, no. 1, pp. 126–147, 2013.
[61] L.
Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based algorithms
for tensor decompositions: Canonical Polyadic Decomposition, decomposition in
rank-
(, ,)LL1
rr
terms and a new generalization,” SIAM J. Optim.,vol.23,no.2,
pp. 695–720, 2013.
[62] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-
rank approximation problem,” SIAM J. Matrix Anal. Appl.,vol.30, pp. 1084–1127,
Sept. 2008.
[63] W. Krijnen, T. Dijkstra, and A. Stegeman, “On the non-existence of optimal
solutions and the occurrence of “degeneracy” in the CANDECOMP/PARAFAC model,”
Psychometrika,vol.73,no.3, pp. 431–439,2008.
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®