Zoom out Search Issue
IEEE SIGNAL PROCESSING MAGAZINE [144] MARCH 2015
[11]M. D.Plumbley,T.Blumensath,L.Daudet,R.Gribonval, and M. E.Davies,
“Sparse representations in audio & music: From coding to source separation,”
Proc. IEEE, vol. 98, no. 6, pp. 995–1005, 2009.
[12] J. Nikunen and T. Virtanen, “Object-based audio coding using nonnegative matrix
factorization for the spectrogram representation,” in Proc. 128th Audio Engineering
Society Convention, London, 2010.
[13] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization
with the Itakura-Saito divergence. With application to music analysis,” Neural
Computat., vol. 21, no. 3, pp. 793–830, 2009.
[14] M. Shashanka, B. Raj, and P. Smaragdis, “Sparse overcomplete latent variable
decomposition of counts data,” in Proc. Neural Information Processing Systems,
Vancouver, Canada, 2007, pp. 1313–1320.
[15] C. Ding, T. Li, and W. Ping, “On the equivalence between nonnegative matrix
factorization and probabilistic latent semantic indexing,” Computat. Stat. Data
Anal., vol. 52, no. 8, pp. 3913–3927, 2008.
[16] E. Zwicker and H. Fastl, Psychoacoustics: Facts and Models.Berlin:Spring-
er-Verlag, 1990.
[17] B. C. J. Moore, Ed., Hearing—Handbook of Perception and Cognition, 2nd
ed. San Diego, CA: Academic Press, 1995.
[18] B. King, C. Févotte, and P. Smaragdis, “Optimal cost function and magnitude
power for NMF-based speech separation and music interpolation,” in Proc. IEEE
Int. Workshop on Machine Learning for Signal Processing,Santander, Spain,
2012, pp. 1–6.
[19] J. Carabias-Orti, F. Rodriguez-Serrano, P. Vera-Candeas, F. Canadas-
Quesada, and N. Ruiz-Reyes, “Constrained nonnegative sparse coding using learnt
instrument templates for realtime music transcription,” in Proc. Engineering Ap-
plications of Artificial Intelligence, 2013, pp. 1671–1680.
[20] F. Weninger and B. Schuller, “Optimization and parallelization of monaural
source separation algorithms in the openBliSSART toolkit,” J. Signal Process.
Syst., vol. 69, no. 3, pp. 267–277, 2012.
[21] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with
the beta-divergence,” Neural Computat., vol. 23, no. 9, pp. 2421–2456, 2011.
[22] D. D. Lee and H. S. Seung, “Algorithms for nonnegative matrix factorization,”
in Proc. Neural Information Processing Systems, Denver, CO, 2000, pp. 556–562.
[23] R. Zdunek and A. Cichocki, “Nonnegative matrix factorization with constrained
second-order optimization,” Signal Process., vol. 87, no. 8, pp. 1904–1916, 2007.
[24] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-like
method and comparisons,” SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261–3281, 2011.
[25] T. Virtanen, J. Gemmeke, and B. Raj, “Active-set Newton algorithm for overcom-
plete nonnegative representations of audio,” IEEE Trans. Audio, Speech, Lang. Pro-
cessing, vol. 21, no. 11, 2013.
[26] T.
Hofmann, “Unsupervised learning by probabilistic latent semantic analysis,”
Mach. Learn., vol. 42, no. 1–2, pp. 177–196, 2001.
[27] M. Shashanka, B. Raj, and P. Smaragdis, “Probabilistic latent variable models
as nonnegative factorizations,” Computat. Intell. Neurosci.,vol. 2008,2008.
[28] G. J. Mysore, P. Smaragdis, and B. Raj, “Nonnegative hidden Markov model-
ing of audio with application to source separation,” in Proc. 9th Int. Conf. Latent
Variable Analysis and Signal Separation, St. Malo, France, 2010, pp. 140–148.
[29] P. Smaragdis, B. Raj, and M. Shashanka, “Missing data imputation for time-
frequency representations of audio signals,” J. Signal Process. Syst.,vol. 11,no. 3,
pp. 361–370, 2011.
[30] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H.
Jensen, “Theorems on positive data: On the uniqueness of NMF,” Computat. Intell.
Neurosci.,vol. 2008,2008.
[31] J. Eggert and E. Korner, “Sparse coding and NMF,” in Proc. IEEE Int. Joint
Conf. Neural Networks, Budapest, Hungary, 2004, pp. 2529–2533.
[32] P. O. Hoyer, “Nonnegative matrix factorization with sparseness constraints,” J.
Mach. Learn. Res., vol. 5, pp. 1457–1469, 2004.
[33] P. D. O. Grady, “Sparse separation of underdetermined speech mixtures,” Ph.D.
dissertation, Natl. Univ. of Ireland, Maynooth, 2007.
[34] T. Virtanen, “Spectral covariance in prior distributions of nonnegative matrix
factorization based speech separation,” in Proc. European Signal Processing Conf.,
Glasgow, Scotland, 2009, pp. 1933–1937.
[35] P. Smaragdis, M. Shashanka, and B. Raj, “A sparse non-parametric approach
for single channel separation of known sounds,” in Proc. Neural Information Pro-
cessing Systems, Vancouver, Canada, 2009, pp. 1705–1713.
[36] D. Griffin and J. Lim, “Signal estimation from modified short-time Fourier
transform,” IEEE Trans. Acoustics, Speech, Signal Processing,vol. 32,no. 2,
pp. 236–242, 1984.
[37] J. Le Roux and E. Vincent, “Consistent Wiener filtering for audio source sepa-
ration,” IEEE Signal Processing Lett., vol. 20, no. 3, pp. 217–220, 2013.
[38] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD and its nonnegative variant
for dictionary design,” in Proc. SPIE Conf. Wavelet Applications in Signal and Im-
age Processing XI,San Diego, CA,2005, pp. 327–339.
[39] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag.,vol. 24,
no. 4, pp. 118–121, 2007.
[40] A. Lefèvre, F. Bach, and C. Févotte, “Itakura-Saito nonnegative matrix factor-
ization with group sparsity,” in Proc. IEEE Int. Conf. Audio, Speech and Signal
Processing, Prague, Czech Republic, 2011, pp. 21–24.
[41] A. T. Cemgil, “Bayesian inference for nonnegative matrix factorisation models,”
Computat. Intell. Neurosci.,vol. 2009,2009.
[42] M. N. Schmidt and M. Mørup, “Infinite nonnegative matrix factorizations,” in
Proc. European Signal Processing Conf., Aalborg, Denmark, 2010.
[43] M. N. Schmidt, O.
Winther, and L. K. Hansen, “Bayesian nonnegative matrix
factorization,” in Proc. 8th Int. Conf. Independent Component Analysis and Blind
Signal Separation,Paraty, Brazil,2009, pp. 540–547.
[44] A. Hurmalainen, R. Saeidi, and T. Virtanen, “Group sparsity for speaker identity
discrimination in factorisation-based speech recognition,” in Proc. Interspeech 2012,
Portland, OR, Oregon.
[45] T. N. Sainath, A. Carmi, D. Kanevsky, and B. Ramabhadran, “Bayesian
compressive sensing for phonetic classification,” in Proc. IEEE Int. Conf. Audio,
Speech and Signal Processing, Dallas, TX, 2010, pp. 4370–4373.
[46] J. Gemmeke, L. ten Bosch, L. Boves, and B. Cranen, “Using sparse representa-
tions for exemplar based continuous digit recognition,” in Proc. European Signal
Processing Conf., Glasgow, Scotland, 2009, pp. 24–28.
[47] K. Mahkonen, A. Hurmalainen, T. Virtanen, and J. F. Gemmeke, “Mapping
sparse representation to state likelihoods in noise-robust automatic speech recogni-
tion,” in Proc. Interspeech 2011, Florence, Italy, pp. 465–468.
[48] Y. Sun, B. Cranen, J. F. Gemmeke, L. Boves, L. ten Bosch, and M. M. Doss,
“Using sparse classification outputs as feature observations for noise-robust ASR,”
in Proc. Interspeech 2012,Portland, OR.
[49] T. N. Sainath, D. Nahamoo, D. Kanevsky, and B. Ramabhadran, “Enhancing exem-
plar-based posteriors for speech recognition tasks,” in Proc. Interspeech 2012, Portland,
OR.
[50] B. Raj, R. Singh, M. Shashanka, and P. Smaragdis, “Bandwidth expansion
with a Polya Urn model,” in Proc. IEEE Int. Conf. Audio, Speech and Signal Pro-
cessing,Honolulu, HI,2007, pp. IV-597–IV-600.
[51] R. Takashima, T. Takiguchi, and Y. Ariki, “Exemplar-based voice conversion
in noisy environment,” in Proc. IEEE Spoken Language Technology Workshop,
2012, pp. 313–317.
[52] Z. Wu, T. Virtanen, T. Kinnunen, E. S. Chng, and H. Li, “Exemplar-based
voice conversion using nonnegative spectrogram deconvolution,” in Proc. 8th ISCA
Speech Synthesis Workshop, Barcelona, Spain, 2013, pp. 201–206.
[53] J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive sens-
ing for missing data imputation in noise robust speech recognition,” IEEE J. Sel.
Top. Signal Processing, vol. 4, no. 2, pp. 272–287, 2010.
[54] J. Le Roux, H. Kameoka, N. Ono, A. de Cheveigné, and S. Sagayama, “Compu-
tational auditory induction as a missing-data model-fitting problem with Bregman
divergence,” SIAM J. Sci. Comput., vol. 54, no. 5, pp. 658–676, 2011.
[55] J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid-level rep-
resentation for pitch estimation and musical audio source separation,” IEEE J. Sel.
Top. Signal Processing, vol. 5, no. 6, pp. 1180–1191, 2011.
[56] J.
Carabias-Orti, T. Virtanen, P. Vera-Candeas, N. Ruiz-Reyes, and F. Canadas-
Quesada, “Musical instrument sound multi-excitation model for nonnegative
spectrogram factorization,” IEEE J. Sel. Top. Signal Processing, vol. 5, no. 6,
pp. 1144–1158, 2011.
[57] Y. K. Yilmaz, A. T. Cemgil, and U. Simsekli, “Generalized coupled tensor fac-
torization,” in Proc. Neural Information Processing Systems,Granada, Spain,
2011, pp. 2151–2159.
[58] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexible framework for the
handling of prior information in audio source separation,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 20, no. 4, pp. 1118–1133, 2012.
[59] N. Yasuraoka, H. Kameoka, T. Yoshioka, and H. G. Okuno, “I-divergence-
based dereverberation method with auxiliary function approach,” in Proc. IEEE
Int. Conf. Audio, Speech and Signal Processing, Prague, Czech Republic, 2011,
pp. 369–372.
[60] R. Singh, B. Raj, and P. Smaragdis, “Latent-variable decomposition based
dereverberation of monaural and multi-channel signals,” in Proc. IEEE Int. Conf.
Audio, Speech and Signal Processing, Dallas, TX, 2010, pp. 1914–1917.
[61] F. Weninger, J. Geiger, M. Wöllmer, B. Schuller, and G. Rigoll, “The Munich
2011 CHiME challenge contribution: NMF-BLSTM speech enhancement and recog-
nition for reverberated multisource environments,” in Proc. Int. Workshop on Ma-
chine Listening in Multisource Environments, Florence, Italy, 2011, pp. 24–29.
[62] D. FitzGerald, M. Cranitch, and E. Coyle, “Extended nonnegative tensor factori-
sation models for musical source separation,” Computat. Intell. Neurosci., vol. 2008,
2008.
[63] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and condi-
tions for an ”explanatory” multimodal factor analysis,” in UCLA Working Papers in
Phonetics, vol. 16, pp. 1–84, 1970.
[64] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Formulations and algo-
rithms for multichannel complex NMF,” in Proc. IEEE Int. Conf. Audio, Speech
and Signal Processing, Prague, Czech Republic, 2011, pp. 229–232.
[SP]
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®
Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
q
q
M
M
q
q
M
M
q
M
THE WORLD’S NEWSSTAND
®