Release Notes
Open Source Used In AsyncOS 8.8 for Cisco Web Security Appliances
69
UINT8 JFIF_minor_version
UINT8 density_unitResolution data from JFIF marker
UINT16 X_density
UINT16 Y_density
boolean saw_Adobe_markerTRUE if an Adobe APP14 marker was seen
UINT8 Adobe_transformColor transform code from Adobe marker
The JPEG color space, unfortunately, is something of a guess since the JPEG
standard proper does not provide a way to record it. In practice most files
adhere to the JFIF or Adobe conventions, and the decoder will recognize these
correctly. See "Special color spaces", below, for more info.
The decompression parameters that determine the basic properties of the
returned image are:
J_COLOR_SPACE out_color_space
Output color space. jpeg_read_header() sets an appropriate default
based on jpeg_color_space; typically it will be RGB or grayscale.
The application can change this field to request output in a different
colorspace. For example, set it to JCS_GRAYSCALE to get grayscale
output from a color file. (This is useful for previewing: grayscale
output is faster than full color since the color components need not
be processed.) Note that not all possible color space transforms are
currently implemented; you may need to extend jdcolor.c if you want an
unusual conversion.
unsigned int scale_num, scale_denom
Scale the image by the fraction scale_num/scale_denom. Currently,
the supported scaling ratios are M/N with all M from 1 to 16, where
N is the source DCT size, which is 8 for baseline JPEG. (The library
design allows for arbitrary scaling ratios but this is not likely
to be implemented any time soon.) The values are initialized by
jpeg_read_header() with the source DCT size. For baseline JPEG
this is 8/8. If you change only the scale_num value while leaving
the other unchanged, then this specifies the DCT scaled size to be
applied on the given input. For baseline JPEG this is equivalent
to M/8 scaling, since the source DCT size for baseline JPEG is 8.
Smaller scaling ratios permit significantly faster decoding since
fewer pixels need be processed and a simpler IDCT method can be used.
boolean quantize_colors
If set TRUE, colormapped output will be delivered. Default is FALSE,
meaning that full-color output will be delivered.
The next three parameters are relevant only if quantize_colors is TRUE.
int desired_number_of_colors