User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

5-2
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 5 Configuring POS on the ML-Series Card
Understanding POS on the ML-Series Card
Caution The maximum tolerable VCAT differential delay for the ML-100T-8 is 48 milliseconds. The VCAT
differential delay is the relative arrival time measurement between members of a virtual concatenation
group (VCG).
Note The initial state of the ONS 15310-CL and ONS 15310-MA ML-Series card POS port is inactive. A POS
interface command of no shutdown is required to carry traffic on the SONET circuit.
Note ML-Series card POS interfaces normally send an alarm for signal label mismatch failure in the ONS
15454 STS path overhead (PDI-P) to the far end when the POS link goes down or when RPR wraps.
ML-Series card POS interfaces do not send PDI-P to the far-end when PDI-P is detected, when a remote
defection indication alarm (RDI-P) is being sent to the far end, or when the only defects detected are
generic framing procedure (GFP)-loss of frame delineation (LFD), GFP client signal fail (CSF), virtual
concatenation (VCAT)-loss of multiframe (LOM), or VCAT-loss of sequence (SQM).
LCAS Support
The ML-100T-8 card and the CE-100T-8 card (both the ONS 15310-CL/ONS 15310-MA version and the
ONS 15454 SONET/SDH version) have hardware-based support for the ITU-T G.7042 standard link
capacity adjustment scheme (LCAS). This allows the user to dynamically resize a high-order or
low-order VCAT circuit through CTC or TL1 without affecting other members of the VCG (errorless).
ML-100T-8 LCAS support is high order only and is limited to a two-member VCG.
The ONS 15454 SONET/SDH ML-Series card has a software-based LCAS (SW-LCAS) scheme. This
scheme is also supported by both the ML-100T-8 card and both versions of the CE-100T-8, but only for
circuits terminating on an ONS 15454 SONET ML-Series card.
J1 Path Trace, and SONET Alarms
The ML-100T-8 card also reports SONET alarms and transmits and monitors the J1 path trace byte in
the same manner as OC-N cards. Support for path termination functions includes:
• H1 and H2 concatenation indication
• Bit interleaved parity 3 (BIP-3) generation
• G1 path status indication
• C2 path signal label read/write
Table 5-1 ML-Series Card Supported Circuit Sizes and Sizes Required for Ethernet Wire Speeds
Ethernet Wire Speed CCAT High Order VCAT High Order
10 Mbps STS-1 STS-1-1v
100 Mbps — STS-1-2v
1
1. STS-1-2v provides a total transport capacity of 98 Mbps