User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

3-6
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 3 Initial Configuration of the ML-Series Card
Startup Configuration File
Manually Creating a Startup Configuration File Through the Serial Console Port
Configuration through the serial console port is familiar to those who have worked with other products
using Cisco IOS. At the end of the configuration procedure, the copy running-config startup-config
command saves a startup configuration file.
The serial console port gives the user visibility to the entire booting process of the ML-Series card.
During initialization the ML-Series card first checks for a locally, valid cached copy of Cisco IOS. It
then either downloads the Cisco IOS software image from the 15310-CL-CTX or the CTX 2500 or
proceeds directly to decompressing and initializing the image. Following Cisco IOS initialization the
CLI prompt appears, at which time the user can enter the Cisco IOS CLI configuration mode and setup
the basic ML-Series configuration.
Passwords
There are two types of passwords that you can configure for an ML-Series card: an enable password and
an enable secret password. For maximum security, make the enable password different from the enable
secret password.
• Enable password—The enable password is an unencrypted password. It can contain any number of
uppercase and lowercase alphanumeric characters. Give the enable password only to users permitted
to make configuration changes to the ML-Series card.
• Enable secret password—The enable secret password is a secure, encrypted password. By setting an
encrypted password, you can prevent unauthorized configuration changes. On systems running
Cisco IOS software, you must enter the enable secret password before you can access global
configuration mode.
An enable secret password can contain from 1 to 25 uppercase and lowercase alphanumeric
characters. The first character cannot be a number. Spaces are valid password characters. Leading
spaces are ignored; trailing spaces are recognized.
Passwords are configured in the “Configuring the Management Port” section on page 3-6.
Configuring the Management Port
Because there is no separate management port on ML-Series cards, any Fast Ethernet interface (0-7), or
any POS interface (0-1) can be configured as a management port.
You can remotely configure the ML-Series card through the management port, but first you must
configure an IP address so that the ML-Series card is reachable or load a startup configuration file. You
can manually configure the management port interface from the Cisco IOS CLI via the serial console
connection.
To configure Telnet for remote management access, perform the following procedure, beginning in user
EXEC mode:
Command Purpose
Step 1
Router> enable
Activates user EXEC (or enable) mode.
The # prompt indicates enable mode.
Step 2
Router# configure terminal
Activates global configuration mode. You can abbreviate
the command to config t. The Router(config)# prompt
indicates that you are in global configuration mode.