User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

17-7
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 17 CE-100T-8 Ethernet Operation
CE-100T-8 SONET Circuits and Features
A single circuit provides a maximum of 100 Mbps of throughput, even when an STS-3c circuit, which
has a bandwidth equivalent of 155 Mbps, is provisioned. This is due to the hardware restriction of the
Fast Ethernet port. A VCAT circuit is also restricted in this manner. Table 17-3 shows the minimum
SONET circuit sizes required for 10 Mbps and 100 Mbps wire speed service.
*STS-1-2v provides a total transport capacity of 98 Mbps.
The number of available circuits and total combined bandwidth for the CE-100T-8 depends on the
combination of circuit sizes configured. Table 17-5 shows the circuit size combinations available for
CE-100T-8 CCAT high-order circuits on the ONS 15310-CL and ONS 15310-MA. Table 17-6 shows the
circuit size combinations available for CE-100T-8 VCAT high-order circuits on the ONS 15310-CL and
ONS 15310-MA.
The CE-100T-8 supports up to eight low order VCAT circuits. The available circuit sizes are VT1.5-nv,
where n ranges from 1 to 64. The total number of VT members cannot exceed 168 VT1.5s with each of
the two pools on the card supporting 84 VT1.5s. The user can create a maximum of two circuits at the
largest low order VCAT circuit size, VT1.5-64v.
Table 17-3 CE-100T-8 Supported Circuit Sizes
CCAT High Order VCAT High Order VCAT Low Order
STS-1 STS-1-1v VT1.5-nV (n= 1 to 64)
STS-3c STS-1-2v
STS-1-3v
Table 17-4 SONET Circuit Size Required for Ethernet Wire Speeds
Ethernet Wire Speed CCAT High Order VCAT High Order VCAT Low Order
Line Rate 100BaseT STS-3c STS-1-3v, STS-1-2v* Not applicable
Sub Rate 100BaseT STS-1 STS-1-1v VT1.5-xV (x=1-64)
Line Rate 10BaseT STS-1 Not applicable VT1.5-7V
Sub Rate 10BaseT Not applicable Not applicable VT1.5-xV (x=1-6)
Table 17-5 CCAT High Order Circuit Size Combinations
Number of STS-3c Circuits Maximum Number of STS-1 Circuits
None 6
13
2None
Table 17-6 VCAT High Order Circuit Size Combinations
Number of STS-1-3v Circuits Maximum Number of STS-1-2v Circuits
None 2
11
2None