User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

16-2
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 16 Configuring Bridging on the ML-Series Card
Configuring Bridging
If the destination address of the packet is known in the bridge table, the packet is forwarded on
a single interface in the bridge group. If the packet’s destination is unknown in the bridge table,
the packet is flooded on all forwarding interfaces in the bridge group. The bridge places source
addresses in the bridge table as it learns them during the process of bridging.
Spanning tree is not mandatory for an ML-Series card bridge group, but if it is configured, a
separate spanning-tree process runs for each configured bridge group. A bridge group
establishes a spanning tree based on the bridge protocol data units (BPDUs) it receives on only
its member interfaces.
Configuring Bridging
Beginning in global configuration mode, use the following steps to configure bridging:
Figure 16-1 shows a bridging example. Example 16-1 shows the code used to configure ML-Series A.
Example 16-2 shows the code used to configure ML-Series B.
Command Purpose
Step 1
ML_Series(config)# no ip
routing
Enables bridging of IP packets. This command needs to be
executed once per card, not once per bridge-group. This step is
not done for IRB.
Step 2
ML_Series(config)# bridge
bridge-group-number
[protocol
{drpi-rstp | rstp | ieee}]
Assigns a bridge group number and defines the appropriate
spanning-tree type:
• drpri-rstp is the protocol used to interconnect dual resilient
packet ring (RPR) to protect from node failure. Do not
configure this option on the ONS 15310-CL or
ONS 15310-MA ML-Series.
• rstp is the IEEE 802.1W Rapid Spanning Tree.
• ieee is the IEEE 802.1D Spanning Tree Protocol.
Note Spanning tree is not mandatory for an ML-Series card
bridge group, but configuring spanning tree blocks
network loops.
Step 3
ML_Series(config)# bridge
bridge-group-number
priority
number
(Optional) Assigns a specific priority to the bridge, to assist in
the spanning-tree root definition. Lowering the priority of a
bridge makes it more likely that the bridge is selected as the root.
Step 4
ML_Series(config)# interface
type number
Enters interface configuration mode to configure the interface of
the ML-Series card.
Step 5
ML_Series(config-if)#
bridge-group
bridge-group-number
Assigns a network interface to a bridge group.
Step 6
ML_Series(config-if)# no
shutdown
Changes the shutdown state to up and enables the interface.
Step 7
ML_Series(config-if)# end
Returns to privileged EXEC mode.
Step 8
ML_Series# copy running-config
startup-config
(Optional) Saves your entries in the configuration file.