User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

8-10
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 8 Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
Configuring Layer 2 Protocol Tunneling
protocol tunneling for CDP, STP, and VTP at the interface and subinterface level. Multiple STP (MSTP)
tunneling support is achieved through subinterface protocol tunneling. The ML-Series cards connected
to the customer switch perform the tunneling process.
When the Layer 2 PDUs that entered the inbound ML-Series switch through the tunnel port exit the
switch through the trunk port into the service-provider network, the switch overwrites the customer
PDU-destination MAC address with a well-known Cisco proprietary multicast address
(01-00-0c-cd-cd-d0). If IEEE 802.1Q tunneling is enabled, packets are also double-tagged; the outer tag
is the customer metro tag and the inner tag is the customer VLAN tag. The core switches ignore the inner
tags and forward the packet to all trunk ports in the same metro VLAN. The ML-Series switches on the
outbound side restore the proper Layer 2 protocol and MAC address information and forward the
packets. Therefore, the Layer 2 PDUs are kept intact and delivered across the service-provider
infrastructure to the other side of the customer network.
This section contains the following information about configuring Layer 2 protocol tunneling:
• Default Layer 2 Protocol Tunneling Configuration, page 8-10
• Layer 2 Protocol Tunneling Configuration Guidelines, page 8-10
• Configuring Layer 2 Tunneling on a Port, page 8-11
• Configuring Layer 2 Tunneling Per-VLAN, page 8-12
• Monitoring and Verifying Tunneling Status, page 8-12
Default Layer 2 Protocol Tunneling Configuration
Table 8-2 shows the default Layer 2 protocol tunneling configuration.
Layer 2 Protocol Tunneling Configuration Guidelines
These are some configuration guidelines and operating characteristics of Layer 2 protocol tunneling:
• The ML-Series card supports Per-VLAN Protocol Tunneling (PVPT), which allows protocol
tunneling to be configured and run on a specific subinterface (VLAN). PVPT configuration is done
at the subinterface level.
• PVPT should be configured on VLANs that carry multi-session transport (MST) BPDUs on the
connected devices.
• The ML-Series card supports tunneling of CDP and STP (including MSTP and VTP protocols).
Protocol tunneling is disabled by default but can be enabled for the individual protocols on
IEEE 802.1Q tunnel ports or on specific VLANs.
Table 8-2 Default Layer 2 Protocol Tunneling Configuration
Feature Default Setting
Layer 2 protocol tunneling Disabled for CDP, STP, and VTP.
Class of service (CoS) value If a CoS value is configured on the interface for data
packets, that value is the default used for Layer 2 PDUs. If
none is configured, there is no default. This allows existing
CoS values to be maintained, unless the user configures
otherwise.