User manual
Table Of Contents
- Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide
- Contents
- Preface
- Overview of the ML-Series Card
- CTC Operations on the ML-Series Card
- Initial Configuration of the ML-Series Card
- Configuring Interfaces on the ML-Series Card
- Configuring POS on the ML-Series Card
- Configuring STP and RSTP on the ML-Series Card
- STP Features
- STP Overview
- Supported STP Instances
- Bridge Protocol Data Units
- Election of the Root Switch
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Timers
- Creating the Spanning-Tree Topology
- Spanning-Tree Interface States
- Spanning-Tree Address Management
- STP and IEEE 802.1Q Trunks
- Spanning Tree and Redundant Connectivity
- Accelerated Aging to Retain Connectivity
- RSTP Features
- Interoperability with IEEE 802.1D STP
- Configuring STP and RSTP Features
- Default STP and RSTP Configuration
- Disabling STP and RSTP
- Configuring the Root Switch
- Configuring the Port Priority
- Configuring the Path Cost
- Configuring the Switch Priority of a Bridge Group
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time for a Bridge Group
- Configuring the Maximum-Aging Time for a Bridge Group
- Verifying and Monitoring STP and RSTP Status
- STP Features
- Configuring VLANs on the ML-Series Card
- Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
- Configuring Link Aggregation on the ML-Series Card
- Configuring IRB on the ML-Series Card
- Configuring Quality of Service on the ML-Series Card
- Understanding QoS
- ML-Series QoS
- QoS on RPR
- Configuring QoS
- Monitoring and Verifying QoS Configuration
- QoS Configuration Examples
- Understanding Multicast QoS and Multicast Priority Queuing
- Configuring Multicast Priority Queuing QoS
- QoS not Configured on Egress
- ML-Series Egress Bandwidth Example
- Understanding CoS-Based Packet Statistics
- Configuring CoS-Based Packet Statistics
- Understanding IP SLA
- Configuring the Switching Database Manager on the ML-Series Card
- Configuring Access Control Lists on the ML-Series Card
- Configuring Resilient Packet Ring on the ML-Series Card
- Understanding RPR
- Configuring RPR
- Connecting the ML-Series Cards with Point-to-Point STS Circuits
- Configuring CTC Circuits for RPR
- Configuring RPR Characteristics and the SPR Interface on the ML-Series Card
- Assigning the ML-Series Card POS Ports to the SPR Interface
- Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces
- RPR Cisco IOS Configuration Example
- Verifying Ethernet Connectivity Between RPR Ethernet Access Ports
- CRC Threshold Configuration and Detection
- Monitoring and Verifying RPR
- Add an ML-Series Card into an RPR
- Delete an ML-Series Card from an RPR
- Cisco Proprietary RPR KeepAlive
- Cisco Proprietary RPR Shortest Path
- Redundant Interconnect
- Configuring Security for the ML-Series Card
- Understanding Security
- Disabling the Console Port on the ML-Series Card
- Secure Login on the ML-Series Card
- Secure Shell on the ML-Series Card
- RADIUS on the ML-Series Card
- RADIUS Relay Mode
- RADIUS Stand Alone Mode
- Understanding RADIUS
- Configuring RADIUS
- Default RADIUS Configuration
- Identifying the RADIUS Server Host
- Configuring AAA Login Authentication
- Defining AAA Server Groups
- Configuring RADIUS Authorization for User Privileged Access and Network Services
- Starting RADIUS Accounting
- Configuring a nas-ip-address in the RADIUS Packet
- Configuring Settings for All RADIUS Servers
- Configuring the ML-Series Card to Use Vendor-Specific RADIUS Attributes
- Configuring the ML-Series Card for Vendor-Proprietary RADIUS Server Communication
- Displaying the RADIUS Configuration
- Configuring Bridging on the ML-Series Card
- CE-100T-8 Ethernet Operation
- Command Reference for the ML-Series Card
- [no] bridge bridge-group-number protocol {drpri-rstp | ieee | rstp}
- clear counters
- [no] clock auto
- interface spr 1
- [no] pos mode gfp [fcs-disabled]
- [no] pos pdi holdoff time
- [no] pos report alarm
- [non] pos trigger defects condition
- [no] pos trigger delay time
- [no] pos vcat defect {immediate | delayed}
- show controller pos interface-number [details]
- show interface pos interface-number
- show ons alarm
- show ons alarm defect {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- show ons alarm failure {[eqpt | port [port-number] | sts [sts-number] | vcg [vcg-number] | vt]}
- spr-intf-id shared-packet-ring-number
- [no] spr load-balance { auto | port-based }
- spr station-id station-id-number
- spr wrap { immediate | delayed }
- Unsupported CLI Commands for the ML-Series Card
- Using Technical Support
- Index

8-4
Cisco ONS 15310-CL and Cisco ONS 15310-MA Ethernet Card Software Feature and Configuration Guide R8.5
78-18133-01
Chapter 8 Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card
Configuring IEEE 802.1Q Tunneling
Configuring IEEE 802.1Q Tunneling
This section includes the following information about configuring IEEE 802.1Q tunneling:
• IEEE 802.1Q Tunneling and Compatibility with Other Features, page 8-4
• Configuring an IEEE 802.1Q Tunneling Port, page 8-4
• IEEE 802.1Q Example, page 8-5
Note By default, IEEE 802.1Q tunneling is not configured on the ML-Series.
IEEE 802.1Q Tunneling and Compatibility with Other Features
Although IEEE 802.1Q tunneling works well for Layer 2 packet switching, there are incompatibilities
with some Layer 2 features and with Layer 3 switching:
• A tunnel port cannot be a routed port.
• Tunnel ports do not support IP access control lists (ACLs).
• Layer 3 quality of service (QoS) ACLs and other QoS features related to Layer 3 information are
not supported on tunnel ports. MAC-based QoS is supported on tunnel ports.
• EtherChannel port groups are compatible with tunnel ports as long as the IEEE 802.1Q
configuration is consistent within an EtherChannel port group.
• Port Aggregation Protocol (PAgP) and Unidirectional Link Detection (UDLD) Protocol are not
supported on IEEE 802.1Q tunnel ports.
• Dynamic Trunking Protocol (DTP) is not compatible with IEEE 802.1Q tunneling because you must
manually configure asymmetric links with tunnel ports and trunk ports.
• Loopback detection is supported on IEEE 802.1Q tunnel ports.
• When a port is configured as an IEEE 802.1Q tunnel port, spanning tree bridge protocol data unit
(BPDU) filtering is automatically disabled on the interface.
Configuring an IEEE 802.1Q Tunneling Port
Beginning in privileged EXEC mode, follow these steps to configure a port as an IEEE 802.1Q tunnel
port:
Command Purpose
Step 1
ML_Series# configure terminal
Enters global configuration mode.
Step 2
ML_Series(config)# bridge
bridge-number
protocol
bridge-protocol
Creates a bridge number and specifies a protocol.
Step 3
ML_Series(config)# interface
fastethernet
number
Enters the interface configuration mode and the interface to be
configured as a tunnel port. This should be the edge port in the
service-provider network that connects to the customer switch. Valid
interfaces include physical interfaces and port-channel logical
interfaces.