User's Manual
Table Of Contents
- Cisco Nexus 3000 NX-OS Layer 2 Switching Configuration Guide, Release 5.0(3)U3(1)
- Contents
- Preface
- New and Changed Information for this Release
- Overview
- Configuring Ethernet Interfaces
- Information About Ethernet Interfaces
- Configuring Ethernet Interfaces
- Configuring the UDLD Mode
- Changing an Interface Port Mode
- Configuring Interface Speed
- Disabling Link Negotiation
- Configuring the CDP Characteristics
- Enabling or Disabling CDP
- Enabling the Error-Disabled Detection
- Enabling the Error-Disabled Recovery
- Configuring the Error-Disabled Recovery Interval
- Configuring the Debounce Timer
- Configuring the Description Parameter
- Disabling and Restarting Ethernet Interfaces
- Displaying Interface Information
- Displaying Input Packet Discard Information
- Default Physical Ethernet Settings
- Configuring VLANs
- Configuring Private VLANs
- Information About Private VLANs
- Guidelines and Limitations for Private VLANs
- Configuring a Private VLAN
- Enabling Private VLANs
- Configuring a VLAN as a Private VLAN
- Associating Secondary VLANs with a Primary Private VLAN
- Configuring an Interface as a Private VLAN Host Port
- Configuring an Interface as a Private VLAN Promiscuous Port
- Configuring a Promiscuous Trunk Port
- Configuring an Isolated Trunk Port
- Configuring the Allowed VLANs for PVLAN Trunking Ports
- Configuring Native 802.1Q VLANs on Private VLANs
- Verifying the Private VLAN Configuration
- Configuring Access and Trunk Interfaces
- Configuring Switching Modes
- Configuring Rapid PVST+
- Information About Rapid PVST+
- Understanding STP
- Understanding Rapid PVST+
- Rapid PVST+ and IEEE 802.1Q Trunks
- Rapid PVST+ Interoperation with Legacy 802.1D STP
- Rapid PVST+ Interoperation with 802.1s MST
- Configuring Rapid PVST+
- Enabling Rapid PVST+
- Enabling Rapid PVST+ per VLAN
- Configuring the Root Bridge ID
- Configuring a Secondary Root Bridge
- Configuring the Rapid PVST+ Port Priority
- Configuring the Rapid PVST+ Pathcost Method and Port Cost
- Configuring the Rapid PVST+ Bridge Priority of a VLAN
- Configuring the Rapid PVST+ Hello Time for a VLAN
- Configuring the Rapid PVST+ Forward Delay Time for a VLAN
- Configuring the Rapid PVST+ Maximum Age Time for a VLAN
- Specifying the Link Type
- Restarting the Protocol
- Verifying Rapid PVST+ Configurations
- Information About Rapid PVST+
- Configuring Multiple Spanning Tree
- Information About MST
- Configuring MST
- MST Configuration Guidelines
- Enabling MST
- Entering MST Configuration Mode
- Specifying the MST Name
- Specifying the MST Configuration Revision Number
- Specifying the Configuration on an MST Region
- Mapping and Unmapping VLANs to MST Instances
- Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs
- Configuring the Root Bridge
- Configuring a Secondary Root Bridge
- Configuring the Port Priority
- Configuring the Port Cost
- Configuring the Switch Priority
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time
- Configuring the Maximum-Aging Time
- Configuring the Maximum-Hop Count
- Configuring PVST Simulation Globally
- Configuring PVST Simulation Per Port
- Specifying the Link Type
- Restarting the Protocol
- Verifying MST Configurations
- Configuring STP Extensions
- About STP Extensions
- Information About STP Extensions
- Configuring STP Extensions
- STP Extensions Configuration Guidelines
- Configuring Spanning Tree Port Types Globally
- Configuring Spanning Tree Edge Ports on Specified Interfaces
- Configuring Spanning Tree Network Ports on Specified Interfaces
- Enabling BPDU Guard Globally
- Enabling BPDU Guard on Specified Interfaces
- Enabling BPDU Filtering Globally
- Enabling BPDU Filtering on Specified Interfaces
- Enabling Loop Guard Globally
- Enabling Loop Guard or Root Guard on Specified Interfaces
- Verifying STP Extension Configuration
- About STP Extensions
- Configuring LLDP
- Configuring the MAC Address Table
- Configuring IGMP Snooping
- Configuring Traffic Storm Control
- INDEX

The following figure shows the broadcast traffic patterns on an Ethernet interface during a specified time
interval. In this example, traffic storm control occurs between times T1 and T2 and between T4 and T5. During
those intervals, the amount of broadcast traffic exceeded the configured threshold.
Figure 19: Broadcast Suppression
The traffic storm control threshold numbers and the time interval allow the traffic storm control algorithm to
work with different levels of packet granularity. For example, a higher threshold allows more packets to pass
through.
Traffic storm control on the Cisco Nexus 3000 Series switch is implemented in the hardware. The traffic
storm control circuitry monitors packets that pass from an Ethernet interface to the switching bus. Using the
Individual/Group bit in the packet destination address, the circuitry determines if the packet is unicast or
broadcast, tracks the current count of packets within the 10-microsecond interval, and filters out subsequent
packets when a threshold is reached.
Traffic storm control uses a bandwidth-based method to measure traffic. You set the percentage of total
available bandwidth that the controlled traffic can use. Because packets do not arrive at uniform intervals, the
10-microsecond interval can affect the operation of traffic storm control.
The following are examples of how traffic storm control operation is affected:
•
If you enable broadcast traffic storm control, and broadcast traffic exceeds the level within the
10-microsecond interval, traffic storm control drops all broadcast traffic until the end of the interval.
•
If you enable multicast traffic storm control, and the multicast traffic exceeds the level within the
10-microsecond interval, traffic storm control drops all multicast traffic until the end of the interval.
•
If you enable broadcast and multicast traffic storm control, and broadcast traffic exceeds the level within
the 10-microsecond interval, traffic storm control drops all broadcast traffic until the end of the interval.
•
If you enable broadcast and multicast traffic storm control, and multicast traffic exceeds the level within
the 10-microsecond interval, traffic storm control drops all multicast traffic until the end of the interval.
By default, Cisco NX-OS takes no corrective action when the traffic exceeds the configured level.
Traffic Storm Guidelines and Limitations
When configuring the traffic storm control level, follow these guidelines and limitations:
Cisco Nexus 3000 NX-OS Layer 2 Switching Configuration Guide, Release 5.0(3)U3(1)
144 OL-26590-01
Configuring Traffic Storm Control
Traffic Storm Guidelines and Limitations