User's Manual
Table Of Contents
- Cisco Nexus 3000 NX-OS Layer 2 Switching Configuration Guide, Release 5.0(3)U3(1)
- Contents
- Preface
- New and Changed Information for this Release
- Overview
- Configuring Ethernet Interfaces
- Information About Ethernet Interfaces
- Configuring Ethernet Interfaces
- Configuring the UDLD Mode
- Changing an Interface Port Mode
- Configuring Interface Speed
- Disabling Link Negotiation
- Configuring the CDP Characteristics
- Enabling or Disabling CDP
- Enabling the Error-Disabled Detection
- Enabling the Error-Disabled Recovery
- Configuring the Error-Disabled Recovery Interval
- Configuring the Debounce Timer
- Configuring the Description Parameter
- Disabling and Restarting Ethernet Interfaces
- Displaying Interface Information
- Displaying Input Packet Discard Information
- Default Physical Ethernet Settings
- Configuring VLANs
- Configuring Private VLANs
- Information About Private VLANs
- Guidelines and Limitations for Private VLANs
- Configuring a Private VLAN
- Enabling Private VLANs
- Configuring a VLAN as a Private VLAN
- Associating Secondary VLANs with a Primary Private VLAN
- Configuring an Interface as a Private VLAN Host Port
- Configuring an Interface as a Private VLAN Promiscuous Port
- Configuring a Promiscuous Trunk Port
- Configuring an Isolated Trunk Port
- Configuring the Allowed VLANs for PVLAN Trunking Ports
- Configuring Native 802.1Q VLANs on Private VLANs
- Verifying the Private VLAN Configuration
- Configuring Access and Trunk Interfaces
- Configuring Switching Modes
- Configuring Rapid PVST+
- Information About Rapid PVST+
- Understanding STP
- Understanding Rapid PVST+
- Rapid PVST+ and IEEE 802.1Q Trunks
- Rapid PVST+ Interoperation with Legacy 802.1D STP
- Rapid PVST+ Interoperation with 802.1s MST
- Configuring Rapid PVST+
- Enabling Rapid PVST+
- Enabling Rapid PVST+ per VLAN
- Configuring the Root Bridge ID
- Configuring a Secondary Root Bridge
- Configuring the Rapid PVST+ Port Priority
- Configuring the Rapid PVST+ Pathcost Method and Port Cost
- Configuring the Rapid PVST+ Bridge Priority of a VLAN
- Configuring the Rapid PVST+ Hello Time for a VLAN
- Configuring the Rapid PVST+ Forward Delay Time for a VLAN
- Configuring the Rapid PVST+ Maximum Age Time for a VLAN
- Specifying the Link Type
- Restarting the Protocol
- Verifying Rapid PVST+ Configurations
- Information About Rapid PVST+
- Configuring Multiple Spanning Tree
- Information About MST
- Configuring MST
- MST Configuration Guidelines
- Enabling MST
- Entering MST Configuration Mode
- Specifying the MST Name
- Specifying the MST Configuration Revision Number
- Specifying the Configuration on an MST Region
- Mapping and Unmapping VLANs to MST Instances
- Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs
- Configuring the Root Bridge
- Configuring a Secondary Root Bridge
- Configuring the Port Priority
- Configuring the Port Cost
- Configuring the Switch Priority
- Configuring the Hello Time
- Configuring the Forwarding-Delay Time
- Configuring the Maximum-Aging Time
- Configuring the Maximum-Hop Count
- Configuring PVST Simulation Globally
- Configuring PVST Simulation Per Port
- Specifying the Link Type
- Restarting the Protocol
- Verifying MST Configurations
- Configuring STP Extensions
- About STP Extensions
- Information About STP Extensions
- Configuring STP Extensions
- STP Extensions Configuration Guidelines
- Configuring Spanning Tree Port Types Globally
- Configuring Spanning Tree Edge Ports on Specified Interfaces
- Configuring Spanning Tree Network Ports on Specified Interfaces
- Enabling BPDU Guard Globally
- Enabling BPDU Guard on Specified Interfaces
- Enabling BPDU Filtering Globally
- Enabling BPDU Filtering on Specified Interfaces
- Enabling Loop Guard Globally
- Enabling Loop Guard or Root Guard on Specified Interfaces
- Verifying STP Extension Configuration
- About STP Extensions
- Configuring LLDP
- Configuring the MAC Address Table
- Configuring IGMP Snooping
- Configuring Traffic Storm Control
- INDEX

IGMPv3
The IGMPv3 snooping implementation on the switch forwards IGMPv3 reports to allow the upstream multicast
router do source-based filtering.
By default, the software tracks hosts on each VLAN port. The explicit tracking feature provides a fast leave
mechanism. Because every IGMPv3 host sends membership reports, a report suppression feature limits the
amount of traffic the switch sends to other multicast capable routers. When report suppression is enabled, and
no IGMPv1 or IGMPv2 hosts requested the same group, the software provides proxy reporting. The proxy
feature builds group state from membership reports from the downstream hosts and generates membership
reports in response to queries from upstream queriers.
Even though the IGMPv3 membership reports provide a full accounting of group members on a LAN segment,
when the last host leaves, the software sends a membership query. You can configure the parameter last
member query interval. If no host responds before the timeout, the software removes the group state.
IGMP Snooping Querier
When there is no multicast router in the VLAN to originate the queries, you must configure an IGMP snooping
querier to send membership queries.
When an IGMP snooping querier is enabled, it sends out periodic IGMP queries that trigger IGMP report
messages from hosts that want to receive IP multicast traffic. IGMP snooping listens to these IGMP reports
to establish appropriate forwarding.
IGMP Forwarding
The control plane of the Cisco Nexus 3000 Series switch is able to detect IP addresses but forwarding occurs
using the MAC address only.
When a host connected to the switch wants to join an IP multicast group, it sends an unsolicited IGMP join
message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query
from a connected router, it forwards the query to all interfaces, physical and virtual, in the VLAN. Hosts
wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates
a multicast forwarding table entry for the group if it is not already present. The CPU also adds the interface
where the join message was received to the forwarding table entry. The host associated with that interface
receives multicast traffic for that multicast group.
The router sends periodic multicast general queries and the switch forwards these queries through all ports in
the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wants to receive multicast
traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group
traffic to only those hosts listed in the forwarding table for that multicast group.
When hosts want to leave a multicast group, they can either silently leave, or they can send a leave message.
When the switch receives a leave message from a host, it sends a group-specific query to determine if any
other devices connected to that interface are interested in traffic for the specific multicast group. The switch
then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast
traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes
the group for the VLAN from its IGMP cache.
Cisco Nexus 3000 NX-OS Layer 2 Switching Configuration Guide, Release 5.0(3)U3(1)
OL-26590-01 137
Configuring IGMP Snooping
IGMPv3