Laptop User Manual
Table Of Contents
- Cisco IOS XR Routing Configuration Guide
- Contents
- Preface
- Document Revision History
- Obtaining Documentation
- Documentation Feedback
- Cisco Product Security Overview
- Obtaining Technical Assistance
- Obtaining Additional Publications and Information
- Implementing BGP on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing BGP on CiscoIOSXR Software
- Information About Implementing BGP on CiscoIOSXR Software
- BGP Functional Overview
- BGP Router Identifier
- BGP Default Limits
- BGP Validation of Local Next-Hop Addresses
- BGP Configuration
- No Default Address Family
- Routing Policy Enforcement
- Table Policy
- Update Groups
- BGP Best Path Algorithm
- Multiprotocol BGP
- Route Dampening
- BGP Routing Domain Confederation
- BGP Route Reflectors
- Default Address Family for show Commands
- How to Implement BGP on CiscoIOSXR Software
- Enabling BGP Routing
- Configuring a Routing Domain Confederation for BGP
- Resetting eBGP Session Immediately Upon Link Failure
- Logging Neighbor Changes
- Adjusting BGP Timers
- Changing the BGP Default Local Preference Value
- Configuring the MED Metric for BGP
- Configuring BGP Weights
- Tuning the BGP Best Path Calculation
- Indicating BGP Backdoor Routes
- Configuring Aggregate Addresses
- Redistributing iBGP Routes into IGP
- Redistributing Prefixes into Multiprotocol BGP
- Configuring BGP Route Dampening
- Applying Policy When Updating the Routing Table
- Setting BGP Administrative Distance
- Configuring a BGP Neighbor Group
- Configuring a BGP Neighbor
- Configuring a Route Reflector for BGP
- Configuring BGP Route Filtering by Route Policy
- Disabling Next Hop Processing on BGP Updates
- Configuring BGP Community and Extended-Community Filtering
- Configuring Software to Store Updates from a Neighbor
- Disabling a BGP Neighbor
- Resetting Neighbors Using BGP Dynamic Inbound Soft Reset
- Resetting Neighbors Using BGP Outbound Soft Reset
- Resetting Neighbors Using BGP Hard Reset
- Clearing Caches, Tables and Databases
- Displaying System and Network Statistics
- Monitoring BGP Update Groups
- Configuration Examples for Implementing BGP on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing IS-IS on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing IS-IS on CiscoIOSXR Software
- Restrictions for Implementing IS-IS on CiscoIOSXR Software
- Information About Implementing IS-IS on CiscoIOSXR Software
- IS-IS Functional Overview
- Key Features Supported in the CiscoIOSXR IS-IS Implementation
- IS-IS Configuration Grouping
- IS-IS Interfaces
- Multitopology Configuration
- IPv6 Routing and Configuring IPv6 Addressing
- Limit LSP Flooding
- Maximum LSP Lifetime and Refresh Interval
- Overload Bit Configuration During Multitopology Operation
- Single-Topology IPv6 Support
- Multitopology IPv6 Support
- Nonstop Forwarding
- Multi-Instance IS-IS
- Multiprotocol Label Switching Traffic Engineering
- Overload Bit on Router
- Default Routes
- Attached Bit on an IS-IS Instance
- Multicast-Intact Feature
- How to Implement IS-IS on CiscoIOSXR Software
- Enabling IS-IS and Configuring Level 1 or Level 2 Routing
- Configuring Single Topology for IS-IS
- Configuring Multitopology for IS-IS
- Controlling LSP Flooding for IS-IS
- Configuring Nonstop Forwarding for IS-IS
- Configuring Authentication for IS-IS
- Configuring MPLS Traffic Engineering for IS-IS
- Tuning Adjacencies for IS-IS on Point-to-Point Interfaces
- Setting SPF Interval for a Single-Topology IPv4 and IPv6 Configuration
- Enabling Multicast-Intact for IS-IS
- Customizing Routes for IS-IS
- Configuration Examples for Implementing IS-IS on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing OSPF on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing OSPF on CiscoIOSXR Software
- Information About Implementing OSPF on CiscoIOSXR Software
- OSPF Functional Overview
- Key Features Supported in the CiscoIOSXR OSPF Implementation
- Comparison of CiscoIOSXR OSPFv3 and OSPFv2
- Importing Addresses into OSPFv3
- OSPF Hierarchical CLI and CLI Inheritance
- OSPF Routing Components
- OSPF Process and Router ID
- Supported OSPF Network Types
- Route Authentication Methods for OSPF Version 2
- Neighbors and Adjacency for OSPF
- Designated Router (DR) for OSPF
- Default Route for OSPF
- Link-State Advertisement Types for OSPF Version 2
- Link-State Advertisement Types for OSPFv3
- Virtual Link and Transit Area for OSPF
- Route Redistribution for OSPF
- OSPF Shortest Path First Throttling
- Nonstop Forwarding for OSPF Version 2
- Load Balancing in OSPF Version 2 and OSPFv3
- Graceful Restart for OSPFv3
- Multicast-Intact Feature
- How to Implement OSPF on CiscoIOSXR Software
- Enabling OSPF
- Configuring Stub and Not-so-Stubby Area Types
- Configuring Neighbors for Nonbroadcast Networks
- Configuring Authentication at Different Hierarchical Levels for OSPF Version 2
- Controlling the Frequency that the Same LSA Is Originated or Accepted for OSPF
- Creating a Virtual Link with MD5 Authentication to Area 0 for OSPF
- Summarizing Subnetwork LSAs on an OSPF ABR
- Redistributing Routes from One IGP into OSPF
- Configuring OSPF Shortest Path First Throttling
- Configuring Nonstop Forwarding for OSPF Version 2
- Configuring OSPF Version 2 for MPLS Traffic Engineering
- Verifying OSPF Configuration and Operation
- Configuring OSPFv3 Graceful Restart
- Enabling Multicast-Intact for OSPFv2
- Configuration Examples for Implementing OSPF on CiscoIOSXR Software
- CiscoIOSXR for OSPF Version 2 Configuration: Example
- CLI Inheritance and Precedence for OSPF Version 2: Example
- MPLS TE for OSPF Version 2: Example
- ABR with Summarization for OSPFv3: Example
- ABR Stub Area for OSPFv3: Example
- ABR Totally Stub Area for OSPFv3: Example
- Route Redistribution for OSPFv3: Example
- Virtual Link Configured Through Area 1 for OSPFv3: Example
- Virtual Link Configured with MD5 Authentication for OSPF Version 2: Example
- Where to Go Next
- Additional References
- Implementing and Monitoring RIB on CiscoIOSXR Software
- Contents
- Prerequisites for Implementing RIB on CiscoIOSXR Software
- Information About RIB Configuration
- How to Deploy and Monitor RIB
- Configuration Examples for RIB Monitoring
- Output of show route Command: Example
- Output of show route backup Command: Example
- Output of show route best-local Command: Example
- Output of show route connected Command: Example
- Output of show route local Command: Example
- Output of show route longer-prefixes Command: Example
- Output of show route next-hop Command: Example
- Where to Go Next
- Additional References
- Implementing Routing Policy on Cisco IOS XR Software
- Implementing Static Routes on Cisco IOS XR Software
- Index

Implementing BGP on Cisco IOS XR Software
Information About Implementing BGP on Cisco IOS XR Software
RC-21
Cisco IOS XR Routing Configuration Guide
2. The best path in each group is determined. Determining the best path is achieved by iterating through
all paths in the group and keeping track of the best one seen so far. Each path is compared with the
best-so-far, and if it is better, it becomes the new best-so-far and is compared with the next path in
the group.
3. A set of paths is formed containing the best path selected from each group in step 2. The overall best
path is selected from this set of paths, by iterating through them as in step 2.
Best Path Change Suppression
The third part of the implementation is to determine whether the best path change can be suppressed or
not—whether the new best path should be used, or continue using the existing best path. The existing
best path can continue to be used if the new one is identical to the point at which the best path selection
algorithm becomes arbitrary (if the router-id is the same). Continuing to use the existing best path can
avoid churn in the network.
Note This suppression behavior does not comply with the IETF Networking Working Group
draft-ietf-idr-bgp4-24.txt document, but is specified in the IETF Networking Working Group
draft-ietf-idr-avoid-transition-00.txt document.
The suppression behavior can be turned off by configuring the bgp bestpath compare-routerid
command. If this command is configured, the new best path is always preferred to the existing one.
Otherwise, the following steps are used to determine whether the best path change can be suppressed:
1. If the existing best path is no longer valid, the change cannot be suppressed.
2. If either the existing or new best paths were received from internal (or confederation) peers or were
locally generated (for example, by redistribution), then the change cannot be suppressed. That is,
suppression is possible only if both paths were received from external peers.
3. If the paths were received from the same peer (the paths would have the same router-id), the change
cannot be suppressed. The router ID is calculated using rules in the “Comparing Pairs of Paths”
section on page RC-19.
4. If the paths have different weights, local preferences, origins, or IGP metrics to their next hops, then
the change cannot be suppressed. Note that all of these values are calculated using the rules in the
“Comparing Pairs of Paths” section on page RC-19.
5. If the paths have different-length AS paths and the bgp bestpath as-path ignore command is not
configured, then the change cannot be suppressed. Again, the AS path length is calculated using the
rules in the “Comparing Pairs of Paths” section on page RC-19.
6. If the MED of the paths can be compared and the MEDs are different, then the change cannot be
suppressed. The decision as to whether the MEDs can be compared is exactly the same as the rules
in the “Comparing Pairs of Paths” section on page RC-19, as is the calculation of the MED value.
7. If all path parameters in steps 1 through 6 do not apply, the change can be suppressed.
Multiprotocol BGP
Multiprotocol BGP is an enhanced BGP that carries routing information for multiple network layer
protocols and IP multicast routes. BGP carries two sets of routes, one set for unicast routing and one set
for multicast routing. The routes associated with multicast routing are used by the Protocol Independent
Multicast (PIM) feature to build data distribution trees.