Laptop User Manual
Table Of Contents
- Cisco IOS XR Routing Configuration Guide
- Contents
- Preface
- Document Revision History
- Obtaining Documentation
- Documentation Feedback
- Cisco Product Security Overview
- Obtaining Technical Assistance
- Obtaining Additional Publications and Information
- Implementing BGP on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing BGP on CiscoIOSXR Software
- Information About Implementing BGP on CiscoIOSXR Software
- BGP Functional Overview
- BGP Router Identifier
- BGP Default Limits
- BGP Validation of Local Next-Hop Addresses
- BGP Configuration
- No Default Address Family
- Routing Policy Enforcement
- Table Policy
- Update Groups
- BGP Best Path Algorithm
- Multiprotocol BGP
- Route Dampening
- BGP Routing Domain Confederation
- BGP Route Reflectors
- Default Address Family for show Commands
- How to Implement BGP on CiscoIOSXR Software
- Enabling BGP Routing
- Configuring a Routing Domain Confederation for BGP
- Resetting eBGP Session Immediately Upon Link Failure
- Logging Neighbor Changes
- Adjusting BGP Timers
- Changing the BGP Default Local Preference Value
- Configuring the MED Metric for BGP
- Configuring BGP Weights
- Tuning the BGP Best Path Calculation
- Indicating BGP Backdoor Routes
- Configuring Aggregate Addresses
- Redistributing iBGP Routes into IGP
- Redistributing Prefixes into Multiprotocol BGP
- Configuring BGP Route Dampening
- Applying Policy When Updating the Routing Table
- Setting BGP Administrative Distance
- Configuring a BGP Neighbor Group
- Configuring a BGP Neighbor
- Configuring a Route Reflector for BGP
- Configuring BGP Route Filtering by Route Policy
- Disabling Next Hop Processing on BGP Updates
- Configuring BGP Community and Extended-Community Filtering
- Configuring Software to Store Updates from a Neighbor
- Disabling a BGP Neighbor
- Resetting Neighbors Using BGP Dynamic Inbound Soft Reset
- Resetting Neighbors Using BGP Outbound Soft Reset
- Resetting Neighbors Using BGP Hard Reset
- Clearing Caches, Tables and Databases
- Displaying System and Network Statistics
- Monitoring BGP Update Groups
- Configuration Examples for Implementing BGP on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing IS-IS on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing IS-IS on CiscoIOSXR Software
- Restrictions for Implementing IS-IS on CiscoIOSXR Software
- Information About Implementing IS-IS on CiscoIOSXR Software
- IS-IS Functional Overview
- Key Features Supported in the CiscoIOSXR IS-IS Implementation
- IS-IS Configuration Grouping
- IS-IS Interfaces
- Multitopology Configuration
- IPv6 Routing and Configuring IPv6 Addressing
- Limit LSP Flooding
- Maximum LSP Lifetime and Refresh Interval
- Overload Bit Configuration During Multitopology Operation
- Single-Topology IPv6 Support
- Multitopology IPv6 Support
- Nonstop Forwarding
- Multi-Instance IS-IS
- Multiprotocol Label Switching Traffic Engineering
- Overload Bit on Router
- Default Routes
- Attached Bit on an IS-IS Instance
- Multicast-Intact Feature
- How to Implement IS-IS on CiscoIOSXR Software
- Enabling IS-IS and Configuring Level 1 or Level 2 Routing
- Configuring Single Topology for IS-IS
- Configuring Multitopology for IS-IS
- Controlling LSP Flooding for IS-IS
- Configuring Nonstop Forwarding for IS-IS
- Configuring Authentication for IS-IS
- Configuring MPLS Traffic Engineering for IS-IS
- Tuning Adjacencies for IS-IS on Point-to-Point Interfaces
- Setting SPF Interval for a Single-Topology IPv4 and IPv6 Configuration
- Enabling Multicast-Intact for IS-IS
- Customizing Routes for IS-IS
- Configuration Examples for Implementing IS-IS on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing OSPF on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing OSPF on CiscoIOSXR Software
- Information About Implementing OSPF on CiscoIOSXR Software
- OSPF Functional Overview
- Key Features Supported in the CiscoIOSXR OSPF Implementation
- Comparison of CiscoIOSXR OSPFv3 and OSPFv2
- Importing Addresses into OSPFv3
- OSPF Hierarchical CLI and CLI Inheritance
- OSPF Routing Components
- OSPF Process and Router ID
- Supported OSPF Network Types
- Route Authentication Methods for OSPF Version 2
- Neighbors and Adjacency for OSPF
- Designated Router (DR) for OSPF
- Default Route for OSPF
- Link-State Advertisement Types for OSPF Version 2
- Link-State Advertisement Types for OSPFv3
- Virtual Link and Transit Area for OSPF
- Route Redistribution for OSPF
- OSPF Shortest Path First Throttling
- Nonstop Forwarding for OSPF Version 2
- Load Balancing in OSPF Version 2 and OSPFv3
- Graceful Restart for OSPFv3
- Multicast-Intact Feature
- How to Implement OSPF on CiscoIOSXR Software
- Enabling OSPF
- Configuring Stub and Not-so-Stubby Area Types
- Configuring Neighbors for Nonbroadcast Networks
- Configuring Authentication at Different Hierarchical Levels for OSPF Version 2
- Controlling the Frequency that the Same LSA Is Originated or Accepted for OSPF
- Creating a Virtual Link with MD5 Authentication to Area 0 for OSPF
- Summarizing Subnetwork LSAs on an OSPF ABR
- Redistributing Routes from One IGP into OSPF
- Configuring OSPF Shortest Path First Throttling
- Configuring Nonstop Forwarding for OSPF Version 2
- Configuring OSPF Version 2 for MPLS Traffic Engineering
- Verifying OSPF Configuration and Operation
- Configuring OSPFv3 Graceful Restart
- Enabling Multicast-Intact for OSPFv2
- Configuration Examples for Implementing OSPF on CiscoIOSXR Software
- CiscoIOSXR for OSPF Version 2 Configuration: Example
- CLI Inheritance and Precedence for OSPF Version 2: Example
- MPLS TE for OSPF Version 2: Example
- ABR with Summarization for OSPFv3: Example
- ABR Stub Area for OSPFv3: Example
- ABR Totally Stub Area for OSPFv3: Example
- Route Redistribution for OSPFv3: Example
- Virtual Link Configured Through Area 1 for OSPFv3: Example
- Virtual Link Configured with MD5 Authentication for OSPF Version 2: Example
- Where to Go Next
- Additional References
- Implementing and Monitoring RIB on CiscoIOSXR Software
- Contents
- Prerequisites for Implementing RIB on CiscoIOSXR Software
- Information About RIB Configuration
- How to Deploy and Monitor RIB
- Configuration Examples for RIB Monitoring
- Output of show route Command: Example
- Output of show route backup Command: Example
- Output of show route best-local Command: Example
- Output of show route connected Command: Example
- Output of show route local Command: Example
- Output of show route longer-prefixes Command: Example
- Output of show route next-hop Command: Example
- Where to Go Next
- Additional References
- Implementing Routing Policy on Cisco IOS XR Software
- Implementing Static Routes on Cisco IOS XR Software
- Index

Implementing BGP on Cisco IOS XR Software
Information About Implementing BGP on Cisco IOS XR Software
RC-4
Cisco IOS XR Routing Configuration Guide
–
512K (524,288) prefixes for IPv4 unicast.
–
128K (131,072) prefixes for IPv4 multicast.
–
128K (131,072) prefixes for IPv6 unicast.
A cease notification message is sent to the neighbor and the peering with the neighbor is terminated
when the number of prefixes received from the peer for a given address family exceeds the maximum
limit (either set by default or configured by the user) for that address family.
It is possible that the maximum number of prefixes for a neighbor for a given address family has been
configured after the peering with the neighbor has been established and a certain number of prefixes have
already been received from the neighbor for that address family. A cease notification message is sent to
the neighbor and peering with the neighbor is terminated immediately after the configuration if the
configured maximum number of prefixes is fewer than the number of prefixes that have already been
received from the neighbor for the address family.
BGP Validation of Local Next-Hop Addresses
When Cisco IOS XR BGP receives a route advertisement from a neighbor, it validates the next-hop
address contained in the route by verifying that the next-hop address is not the same as an IP address
assigned to an interface on this router (for example, a local address). If the received next-hop address is
a local address, the update is dropped. However, if the next-hop address is set to a local address by the
configured inbound policy, the update is not dropped, is treated as a valid next-hop address, and is
processed normally in Cisco IOS XR BGP. This verification means that the router advertises to its
neighbors that it has a route to the prefix, but any traffic received for that prefix is dropped.
This “blackholing” effect is often used to automatically protect against Denial of Service (DOS) attacks
on user hosts. An inbound policy is configured that sets the next hop to a local address (for example, the
address of a loopback interface) when a route with a particular community is received. When a user finds
that a host is under a DOS attack, a BGP advertisement is sent to the address of the attacked host with
the special community attached. The advertisement causes the Internet service provider (ISP) router to
install a route with a local next hop for that address that drops all traffic destined for it.
BGP Configuration
Cisco IOS XR BGP follows a neighbor-based configuration model that requires that all configurations
for a particular neighbor be grouped in one place under the neighbor configuration. Peer groups are not
supported for either sharing configuration between neighbors or for sharing update messages. The
concept of peer group has been replaced by a set of configuration groups to be used as templates in BGP
configuration and automatically generated update groups to share update messages between neighbors.
BGP configurations are grouped into four major categories:
–
Router Configuration Mode
–
Global Address Family Configuration Mode
–
Neighbor Configuration Mode
–
Neighbor Address Family Configuration Mode
Configuration Modes
The following sections show how to enter each of the configuration modes. From a mode, you can enter
the ? command to display the commands available in that mode.