Laptop User Manual
Table Of Contents
- Cisco IOS XR Routing Configuration Guide
- Contents
- Preface
- Document Revision History
- Obtaining Documentation
- Documentation Feedback
- Cisco Product Security Overview
- Obtaining Technical Assistance
- Obtaining Additional Publications and Information
- Implementing BGP on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing BGP on CiscoIOSXR Software
- Information About Implementing BGP on CiscoIOSXR Software
- BGP Functional Overview
- BGP Router Identifier
- BGP Default Limits
- BGP Validation of Local Next-Hop Addresses
- BGP Configuration
- No Default Address Family
- Routing Policy Enforcement
- Table Policy
- Update Groups
- BGP Best Path Algorithm
- Multiprotocol BGP
- Route Dampening
- BGP Routing Domain Confederation
- BGP Route Reflectors
- Default Address Family for show Commands
- How to Implement BGP on CiscoIOSXR Software
- Enabling BGP Routing
- Configuring a Routing Domain Confederation for BGP
- Resetting eBGP Session Immediately Upon Link Failure
- Logging Neighbor Changes
- Adjusting BGP Timers
- Changing the BGP Default Local Preference Value
- Configuring the MED Metric for BGP
- Configuring BGP Weights
- Tuning the BGP Best Path Calculation
- Indicating BGP Backdoor Routes
- Configuring Aggregate Addresses
- Redistributing iBGP Routes into IGP
- Redistributing Prefixes into Multiprotocol BGP
- Configuring BGP Route Dampening
- Applying Policy When Updating the Routing Table
- Setting BGP Administrative Distance
- Configuring a BGP Neighbor Group
- Configuring a BGP Neighbor
- Configuring a Route Reflector for BGP
- Configuring BGP Route Filtering by Route Policy
- Disabling Next Hop Processing on BGP Updates
- Configuring BGP Community and Extended-Community Filtering
- Configuring Software to Store Updates from a Neighbor
- Disabling a BGP Neighbor
- Resetting Neighbors Using BGP Dynamic Inbound Soft Reset
- Resetting Neighbors Using BGP Outbound Soft Reset
- Resetting Neighbors Using BGP Hard Reset
- Clearing Caches, Tables and Databases
- Displaying System and Network Statistics
- Monitoring BGP Update Groups
- Configuration Examples for Implementing BGP on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing IS-IS on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing IS-IS on CiscoIOSXR Software
- Restrictions for Implementing IS-IS on CiscoIOSXR Software
- Information About Implementing IS-IS on CiscoIOSXR Software
- IS-IS Functional Overview
- Key Features Supported in the CiscoIOSXR IS-IS Implementation
- IS-IS Configuration Grouping
- IS-IS Interfaces
- Multitopology Configuration
- IPv6 Routing and Configuring IPv6 Addressing
- Limit LSP Flooding
- Maximum LSP Lifetime and Refresh Interval
- Overload Bit Configuration During Multitopology Operation
- Single-Topology IPv6 Support
- Multitopology IPv6 Support
- Nonstop Forwarding
- Multi-Instance IS-IS
- Multiprotocol Label Switching Traffic Engineering
- Overload Bit on Router
- Default Routes
- Attached Bit on an IS-IS Instance
- Multicast-Intact Feature
- How to Implement IS-IS on CiscoIOSXR Software
- Enabling IS-IS and Configuring Level 1 or Level 2 Routing
- Configuring Single Topology for IS-IS
- Configuring Multitopology for IS-IS
- Controlling LSP Flooding for IS-IS
- Configuring Nonstop Forwarding for IS-IS
- Configuring Authentication for IS-IS
- Configuring MPLS Traffic Engineering for IS-IS
- Tuning Adjacencies for IS-IS on Point-to-Point Interfaces
- Setting SPF Interval for a Single-Topology IPv4 and IPv6 Configuration
- Enabling Multicast-Intact for IS-IS
- Customizing Routes for IS-IS
- Configuration Examples for Implementing IS-IS on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing OSPF on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing OSPF on CiscoIOSXR Software
- Information About Implementing OSPF on CiscoIOSXR Software
- OSPF Functional Overview
- Key Features Supported in the CiscoIOSXR OSPF Implementation
- Comparison of CiscoIOSXR OSPFv3 and OSPFv2
- Importing Addresses into OSPFv3
- OSPF Hierarchical CLI and CLI Inheritance
- OSPF Routing Components
- OSPF Process and Router ID
- Supported OSPF Network Types
- Route Authentication Methods for OSPF Version 2
- Neighbors and Adjacency for OSPF
- Designated Router (DR) for OSPF
- Default Route for OSPF
- Link-State Advertisement Types for OSPF Version 2
- Link-State Advertisement Types for OSPFv3
- Virtual Link and Transit Area for OSPF
- Route Redistribution for OSPF
- OSPF Shortest Path First Throttling
- Nonstop Forwarding for OSPF Version 2
- Load Balancing in OSPF Version 2 and OSPFv3
- Graceful Restart for OSPFv3
- Multicast-Intact Feature
- How to Implement OSPF on CiscoIOSXR Software
- Enabling OSPF
- Configuring Stub and Not-so-Stubby Area Types
- Configuring Neighbors for Nonbroadcast Networks
- Configuring Authentication at Different Hierarchical Levels for OSPF Version 2
- Controlling the Frequency that the Same LSA Is Originated or Accepted for OSPF
- Creating a Virtual Link with MD5 Authentication to Area 0 for OSPF
- Summarizing Subnetwork LSAs on an OSPF ABR
- Redistributing Routes from One IGP into OSPF
- Configuring OSPF Shortest Path First Throttling
- Configuring Nonstop Forwarding for OSPF Version 2
- Configuring OSPF Version 2 for MPLS Traffic Engineering
- Verifying OSPF Configuration and Operation
- Configuring OSPFv3 Graceful Restart
- Enabling Multicast-Intact for OSPFv2
- Configuration Examples for Implementing OSPF on CiscoIOSXR Software
- CiscoIOSXR for OSPF Version 2 Configuration: Example
- CLI Inheritance and Precedence for OSPF Version 2: Example
- MPLS TE for OSPF Version 2: Example
- ABR with Summarization for OSPFv3: Example
- ABR Stub Area for OSPFv3: Example
- ABR Totally Stub Area for OSPFv3: Example
- Route Redistribution for OSPFv3: Example
- Virtual Link Configured Through Area 1 for OSPFv3: Example
- Virtual Link Configured with MD5 Authentication for OSPF Version 2: Example
- Where to Go Next
- Additional References
- Implementing and Monitoring RIB on CiscoIOSXR Software
- Contents
- Prerequisites for Implementing RIB on CiscoIOSXR Software
- Information About RIB Configuration
- How to Deploy and Monitor RIB
- Configuration Examples for RIB Monitoring
- Output of show route Command: Example
- Output of show route backup Command: Example
- Output of show route best-local Command: Example
- Output of show route connected Command: Example
- Output of show route local Command: Example
- Output of show route longer-prefixes Command: Example
- Output of show route next-hop Command: Example
- Where to Go Next
- Additional References
- Implementing Routing Policy on Cisco IOS XR Software
- Implementing Static Routes on Cisco IOS XR Software
- Index

Implementing OSPF on Cisco IOS XR Software
Information About Implementing OSPF on Cisco IOS XR Software
RC-141
Cisco IOS XR Routing Configuration Guide
through intelligent line cards while the standby Route Processor (RP) assumes control from the failed
RP. The ability of line cards to remain up through a failover and to be kept current with the Forwarding
Information Base (FIB) on the active RP is key to Cisco IOS XR NSF operation.
Routing protocols, such as OSPF, run only on the active RP or DRP and receive routing updates from
their neighbor routers. When an OSPF NSF-capable router performs an RP failover, it must perform two
tasks to resynchronize its link-state database with its OSPF neighbors. First, it must relearn the available
OSPF neighbors on the network without causing a reset of the neighbor relationship. Second, it must
reacquire the contents of the link-state database for the network.
As quickly as possible after an RP failover, the NSF-capable router sends an OSPF NSF signal to
neighboring NSF-aware devices. This signal is in the form of a link-local LSA generated by the
failed-over router. Neighbor networking devices recognize this signal as a cue that the neighbor
relationship with this router should not be reset. As the NSF-capable router receives signals from other
routers on the network, it can begin to rebuild its neighbor list.
After neighbor relationships are re-established, the NSF-capable router begins to resynchronize its
database with all of its NSF-aware neighbors. At this point, the routing information is exchanged
between the OSPF neighbors. After this exchange is completed, the NSF-capable device uses the routing
information to remove stale routes, update the RIB, and update the FIB with the new forwarding
information. OSPF on the router as well as the OSPF neighbors are now fully converged.
Note The standardized IETF version of NSF, known as OSPF graceful restart (RFC 3623) is also supported.
Load Balancing in OSPF Version 2 and OSPFv3
When a router learns multiple routes to a specific network by using multiple routing processes (or
routing protocols), it installs the route with the lowest administrative distance in the routing table.
Sometimes the router must select a route from among many learned by using the same routing process
with the same administrative distance. In this case, the router chooses the path with the lowest cost (or
metric) to the destination. Each routing process calculates its cost differently; the costs may need to be
manipulated to achieve load balancing.
OSPF performs load balancing automatically. If OSPF finds that it can reach a destination through more
than one interface and each path has the same cost, it installs each path in the routing table. The only
restriction on the number of paths to the same destination is controlled by the maximum-paths (OSPF)
command. The default number of maximum paths is 32 for Cisco CRS-1 routers and 16 for
Cisco XR 12000 Series Routers. The range is from 1 to 32 for Cisco CRS-1 routers and 1 to 16 for
Cisco XR 12000 Series Routers.
Graceful Restart for OSPFv3
In the current release, various restart scenarios in the control plane of an IPv6-enabled router can disrupt
data forwarding. The OSPFv3 Graceful Restart feature can preserve the data plane capability in the
following circumstances:
• RP failure, resulting in a switchover to the backup processor
• Planned OSPFv3 process restart, such as software upgrade or downgrade
• Unplanned OSPFv3 process restart, such as a process crash
This feature supports non-stop data forwarding on established routes while the OSPFv3 routing protocol
is restarting. (Therefore, this feature enhances high availability of IPv6 forwarding.)