Laptop User Manual
Table Of Contents
- Cisco IOS XR Routing Configuration Guide
- Contents
- Preface
- Document Revision History
- Obtaining Documentation
- Documentation Feedback
- Cisco Product Security Overview
- Obtaining Technical Assistance
- Obtaining Additional Publications and Information
- Implementing BGP on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing BGP on CiscoIOSXR Software
- Information About Implementing BGP on CiscoIOSXR Software
- BGP Functional Overview
- BGP Router Identifier
- BGP Default Limits
- BGP Validation of Local Next-Hop Addresses
- BGP Configuration
- No Default Address Family
- Routing Policy Enforcement
- Table Policy
- Update Groups
- BGP Best Path Algorithm
- Multiprotocol BGP
- Route Dampening
- BGP Routing Domain Confederation
- BGP Route Reflectors
- Default Address Family for show Commands
- How to Implement BGP on CiscoIOSXR Software
- Enabling BGP Routing
- Configuring a Routing Domain Confederation for BGP
- Resetting eBGP Session Immediately Upon Link Failure
- Logging Neighbor Changes
- Adjusting BGP Timers
- Changing the BGP Default Local Preference Value
- Configuring the MED Metric for BGP
- Configuring BGP Weights
- Tuning the BGP Best Path Calculation
- Indicating BGP Backdoor Routes
- Configuring Aggregate Addresses
- Redistributing iBGP Routes into IGP
- Redistributing Prefixes into Multiprotocol BGP
- Configuring BGP Route Dampening
- Applying Policy When Updating the Routing Table
- Setting BGP Administrative Distance
- Configuring a BGP Neighbor Group
- Configuring a BGP Neighbor
- Configuring a Route Reflector for BGP
- Configuring BGP Route Filtering by Route Policy
- Disabling Next Hop Processing on BGP Updates
- Configuring BGP Community and Extended-Community Filtering
- Configuring Software to Store Updates from a Neighbor
- Disabling a BGP Neighbor
- Resetting Neighbors Using BGP Dynamic Inbound Soft Reset
- Resetting Neighbors Using BGP Outbound Soft Reset
- Resetting Neighbors Using BGP Hard Reset
- Clearing Caches, Tables and Databases
- Displaying System and Network Statistics
- Monitoring BGP Update Groups
- Configuration Examples for Implementing BGP on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing IS-IS on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing IS-IS on CiscoIOSXR Software
- Restrictions for Implementing IS-IS on CiscoIOSXR Software
- Information About Implementing IS-IS on CiscoIOSXR Software
- IS-IS Functional Overview
- Key Features Supported in the CiscoIOSXR IS-IS Implementation
- IS-IS Configuration Grouping
- IS-IS Interfaces
- Multitopology Configuration
- IPv6 Routing and Configuring IPv6 Addressing
- Limit LSP Flooding
- Maximum LSP Lifetime and Refresh Interval
- Overload Bit Configuration During Multitopology Operation
- Single-Topology IPv6 Support
- Multitopology IPv6 Support
- Nonstop Forwarding
- Multi-Instance IS-IS
- Multiprotocol Label Switching Traffic Engineering
- Overload Bit on Router
- Default Routes
- Attached Bit on an IS-IS Instance
- Multicast-Intact Feature
- How to Implement IS-IS on CiscoIOSXR Software
- Enabling IS-IS and Configuring Level 1 or Level 2 Routing
- Configuring Single Topology for IS-IS
- Configuring Multitopology for IS-IS
- Controlling LSP Flooding for IS-IS
- Configuring Nonstop Forwarding for IS-IS
- Configuring Authentication for IS-IS
- Configuring MPLS Traffic Engineering for IS-IS
- Tuning Adjacencies for IS-IS on Point-to-Point Interfaces
- Setting SPF Interval for a Single-Topology IPv4 and IPv6 Configuration
- Enabling Multicast-Intact for IS-IS
- Customizing Routes for IS-IS
- Configuration Examples for Implementing IS-IS on CiscoIOSXR Software
- Where to Go Next
- Additional References
- Implementing OSPF on Cisco IOS XR Software
- Contents
- Prerequisites for Implementing OSPF on CiscoIOSXR Software
- Information About Implementing OSPF on CiscoIOSXR Software
- OSPF Functional Overview
- Key Features Supported in the CiscoIOSXR OSPF Implementation
- Comparison of CiscoIOSXR OSPFv3 and OSPFv2
- Importing Addresses into OSPFv3
- OSPF Hierarchical CLI and CLI Inheritance
- OSPF Routing Components
- OSPF Process and Router ID
- Supported OSPF Network Types
- Route Authentication Methods for OSPF Version 2
- Neighbors and Adjacency for OSPF
- Designated Router (DR) for OSPF
- Default Route for OSPF
- Link-State Advertisement Types for OSPF Version 2
- Link-State Advertisement Types for OSPFv3
- Virtual Link and Transit Area for OSPF
- Route Redistribution for OSPF
- OSPF Shortest Path First Throttling
- Nonstop Forwarding for OSPF Version 2
- Load Balancing in OSPF Version 2 and OSPFv3
- Graceful Restart for OSPFv3
- Multicast-Intact Feature
- How to Implement OSPF on CiscoIOSXR Software
- Enabling OSPF
- Configuring Stub and Not-so-Stubby Area Types
- Configuring Neighbors for Nonbroadcast Networks
- Configuring Authentication at Different Hierarchical Levels for OSPF Version 2
- Controlling the Frequency that the Same LSA Is Originated or Accepted for OSPF
- Creating a Virtual Link with MD5 Authentication to Area 0 for OSPF
- Summarizing Subnetwork LSAs on an OSPF ABR
- Redistributing Routes from One IGP into OSPF
- Configuring OSPF Shortest Path First Throttling
- Configuring Nonstop Forwarding for OSPF Version 2
- Configuring OSPF Version 2 for MPLS Traffic Engineering
- Verifying OSPF Configuration and Operation
- Configuring OSPFv3 Graceful Restart
- Enabling Multicast-Intact for OSPFv2
- Configuration Examples for Implementing OSPF on CiscoIOSXR Software
- CiscoIOSXR for OSPF Version 2 Configuration: Example
- CLI Inheritance and Precedence for OSPF Version 2: Example
- MPLS TE for OSPF Version 2: Example
- ABR with Summarization for OSPFv3: Example
- ABR Stub Area for OSPFv3: Example
- ABR Totally Stub Area for OSPFv3: Example
- Route Redistribution for OSPFv3: Example
- Virtual Link Configured Through Area 1 for OSPFv3: Example
- Virtual Link Configured with MD5 Authentication for OSPF Version 2: Example
- Where to Go Next
- Additional References
- Implementing and Monitoring RIB on CiscoIOSXR Software
- Contents
- Prerequisites for Implementing RIB on CiscoIOSXR Software
- Information About RIB Configuration
- How to Deploy and Monitor RIB
- Configuration Examples for RIB Monitoring
- Output of show route Command: Example
- Output of show route backup Command: Example
- Output of show route best-local Command: Example
- Output of show route connected Command: Example
- Output of show route local Command: Example
- Output of show route longer-prefixes Command: Example
- Output of show route next-hop Command: Example
- Where to Go Next
- Additional References
- Implementing Routing Policy on Cisco IOS XR Software
- Implementing Static Routes on Cisco IOS XR Software
- Index

Implementing OSPF on Cisco IOS XR Software
Information About Implementing OSPF on Cisco IOS XR Software
RC-133
Cisco IOS XR Routing Configuration Guide
Areas
Areas allow the subdivision of an autonomous system into smaller, more manageable networks or sets
of adjacent networks. As shown in Figure 6, autonomous system A consists of three areas: Area 0, Area
1, and Area 2.
OSPF hides the topology of an area from the rest of the autonomous system. The network topology for
an area is visible only to routers inside that area. When OSPF routing is within an area, it is called
intra-area routing. This routing limits the amount of link-state information flood into the network,
reducing routing traffic. It also reduces the size of the topology information in each router, conserving
processing and memory requirements in each router.
Also, the routers within an area cannot see the detailed network topology outside the area. Because of
this restricted view of topological information, you can control traffic flow between areas and reduce
routing traffic when the entire autonomous system is a single routing domain.
Backbone Area
A backbone area is responsible for distributing routing information between multiple areas of an
autonomous system. OSPF routing occurring outside of an area is called interarea routing.
The backbone itself has all properties of an area. It consists of ABRs, routers, and networks only on the
backbone. As shown in Figure 6, Area 0 is an OSPF backbone area. Any OSPF backbone area has a
reserved area ID of 0.0.0.0.
Stub Area
A stub area is an area that does not accept or detailed network information external to the area. A stub
area typically has only one router that interfaces the area to the rest of the autonomous system. The stub
ABR advertises a single default route to external destinations into the stub area. Routers within a stub
area use this route for destinations outside the area and the autonomous system. This relationship
conserves LSA database space that would otherwise be used to store external LSAs flooded into the area.
In Figure 6, Area 2 is a stub area that is reached only through ABR 2. Area 0 cannot be a stub area.
Not-so-Stubby Area (NSSA)
NSSA is similar to the stub area. NSSA does not flood Type 5 external LSAs from the core into the area,
but can import autonomous system external routes in a limited fashion within the area.
NSSA allows importing of Type 7 autonomous system external routes within an NSSA area by
redistribution. These Type 7 LSAs are translated into Type 5 LSAs by NSSA ABRs, which are flooded
throughout the whole routing domain. Summarization and filtering are supported during the translation.
Use NSSA to simplify administration if you are a network administrator that must connect a central site
using OSPF to a remote site that is using a different routing protocol.
Before NSSA, the connection between the corporate site border router and remote router could not be
run as an OSPF stub area because routes for the remote site could not be redistributed into a stub area,
and two routing protocols needed to be maintained. A simple protocol like RIP was usually run and
handled the redistribution. With NSSA, you can extend OSPF to cover the remote connection by
defining the area between the corporate router and remote router as an NSSA. Area 0 cannot be an
NSSA.