- Cisco ONS 15454 Manual
Table Of Contents
- Contents
- About This Manual
- Hardware Installation
- 1.1 Installation Overview
- 1.2 Installation Equipment
- 1.3 Rack Installation
- 1.4 Front Door Access
- 1.5 Backplane Access
- 1.6 EIA Installation
- 1.7 Fan-Tray Assembly Installation
- 1.8 Power and Ground Installation
- 1.9 Alarm, Timing, LAN, and Craft Pin Connections
- 1.10 Coaxial Cable Installation
- 1.11 DS-1 Cable Installation
- 1.12 Card Installation
- 1.13 Fiber-Optic Cable Installation
- 1.14 Cable Routing and Management
- 1.15 Ferrite Installation
- 1.16 ONS 15454 Assembly Specifications
- 1.16.1 Bandwidth
- 1.16.2 Slot Assignments
- 1.16.3 Cards
- 1.16.4 Configurations
- 1.16.5 Cisco Transport Controller
- 1.16.6 External LAN Interface
- 1.16.7 TL1 Craft Interface
- 1.16.8 Modem Interface
- 1.16.9 Alarm Interface
- 1.16.10 EIA Interface
- 1.16.11 Nonvolatile Memory
- 1.16.12 BITS Interface
- 1.16.13 System Timing
- 1.16.14 Power Specifications
- 1.16.15 Environmental Specifications
- 1.16.16 Dimensions
- 1.17 Installation Checklist
- 1.18 ONS 15454 Software and Hardware Compatibility Matrix
- Software Installation
- 2.1 Installation Overview
- 2.2 Computer Requirements
- 2.3 Running the CTC Setup Wizard
- 2.4 Connecting PCs to the ONS 15454
- 2.5 Logging into the ONS 15454
- 2.6 Working with the CTC Window
- 2.6.1 Node View
- 2.6.2 Network View
- 2.6.2.1 CTC Node Colors
- 2.6.2.2 Network View Tasks
- 2.6.2.3 Creating Domains
- 2.6.2.4 Changing the Network View Background Color
- Procedure: Modify the Network or Domain Background Color
- 2.6.2.5 Changing the Network View Background Image
- Procedure: Change the Network View Background Image
- Procedure: Add a Node to the Current Session
- 2.6.3 Card View
- 2.7 CTC Navigation
- 2.8 Viewing CTC Table Data
- 2.9 Printing and Exporting CTC Data
- 2.10 Displaying CTC Data in Other Applications
- Node Setup
- IP Networking
- 4.1 IP Networking Overview
- 4.2 ONS 15454 IP Addressing Scenarios
- 4.2.1 Scenario 1: CTC and ONS 15454s on Same Subnet
- 4.2.2 Scenario 2: CTC and ONS 15454s Connected to Router
- 4.2.3 Scenario 3: Using Proxy ARP to Enable an ONS 15454 Gateway
- 4.2.4 Scenario 4: Default Gateway on CTC Computer
- 4.2.5 Scenario 5: Using Static Routes to Connect to LANs
- 4.2.6 Scenario 6: Static Route for Multiple CTCs
- 4.2.7 Scenario 7: Using OSPF
- 4.3 Viewing the ONS 15454 Routing Table
- SONET Topologies
- 5.1 Before You Begin
- 5.2 Bidirectional Line Switched Rings
- 5.3 Unidirectional Path Switched Rings
- 5.4 Subtending Rings
- 5.5 Linear ADM Configurations
- 5.6 Path-Protected Mesh Networks
- Circuits and Tunnels
- Card Provisioning
- 7.1 Performance Monitoring Thresholds
- 7.2 Provisioning Electrical Cards
- 7.3 Provisioning Optical Cards
- 7.4 Provisioning IPPM
- 7.5 Provisioning the Alarm Interface Controller
- 7.6 Converting DS-1 and DS-3 Cards From 1:1 to 1:N Protection
- Performance Monitoring
- 8.1 Using the Performance Monitoring Screen
- 8.2 Changing Thresholds
- 8.3 Enabling Intermediate-Path Performance Monitoring
- 8.4 Pointer Justification Count Parameters
- 8.5 Performance Monitoring for Electrical Cards
- 8.6 Performance Monitoring for Optical Cards
- Ethernet Operation
- 9.1 Ethernet Cards
- 9.2 Multicard and Single-Card EtherSwitch
- 9.3 Ethernet Circuit Configurations
- 9.4 VLAN Support
- 9.5 Spanning Tree (IEEE 802.1D)
- 9.6 Ethernet Performance and Maintenance Screens
- 9.7 Remote Monitoring Specification Alarm Thresholds
- Alarm Monitoring and Management
- 10.1 Overview
- 10.2 Viewing ONS 15454 Alarms
- 10.3 Alarm Profiles
- 10.4 Suppressing Alarms
- SNMP
- Circuit Routing
- Regulatory and Compliance Requirements
- Regulatory Compliance
- Japan Approvals
- Installation Warnings
- DC Power Disconnection Warning
- DC Power Connection Warning
- Power Supply Disconnection Warning
- Outside Line Connection Warning
- Class 1 Laser Product Warning
- Class I and Class 1M Laser Warning
- Restricted Area Warning
- Ground Connection Warning
- Qualified Personnel Warning
- Invisible Laser Radiation Warning (other versions available)
- More Than One Power Supply
- Unterminated Fiber Warning
- Laser Activation Warning
- Acronyms
- Glossary
- index

8-40
Cisco ONS 15454 Installation and Operations Guide
November 2001
Chapter 8 Performance Monitoring
Performance Monitoring for Optical Cards
PPJC-Pgen
Positive Pointer Justification Count, STS Path Generated (PPJC-Pgen) is
a count of the positive pointer justifications generated for a particular path
to reconcile the frequency of the SPE with the local clock.
NPJC-Pgen
Negative Pointer Justification Count, STS Path Generated (PPJC-Pgen) is
a count of the negative pointer justifications generated for a particular
path to reconcile the frequency of the synchronous payload envelope
(SPE) with the local clock.
Table 8-38 Near-End Line Layer PMs for the OC-12, OC-48, and OC-192 Cards
Parameter Definition
PSC (BLSR)
For a protect line in a 2-fiber ring, Protection Switching Count (PSC)
refers to the number of times a protection switch has occurred either to a
particular span’s line protection or away from a particular span’s line
protection. Therefore, if a protection switch occurs on a 2-fiber BLSR, the
PSC of the protection span to which the traffic is switched will increment,
and when the switched traffic returns to its original working span from the
protect span, the PSC of the protect span will increment again.
PSC (1+1 protection)
In a 1 + 1 protection scheme for a working card, Protection Switching
Count (PSC) is a count of the number of times service switches from a
working card to a protection card plus the number of times service
switches back to the working card.
For a protection card, PSC is a count of the number of times service
switches to a working card from a protection card plus the number of
times service switches back to the protection card. The PSC PM is only
applicable if revertive line-level protection switching is used.
PSD
For an active protection line in a 2-fiber BLSR, Protection Switching
Duration (PSD) is a count of the number of seconds that the protect line
is carrying working traffic following the failure of the working line. PSD
increments on the active protect line and PSD-W increments on the failed
working line.
PSC-W
For a working line in a 2-fiber BLSR, Protection Switching
Count-Working (PSC-W) is a count of the number of times traffic
switches away from the working capacity in the failed line and back to the
working capacity after the failure is cleared. PSC-W increments on the
failed working line and PSC increments on the active protect line.
For a working line in a 4-fiber BLSR, PSC-W is a count of the number of
times service switches from a working line to a protection line plus the
number of times it switches back to the working line. PSC-W increments
on the failed line and PSC-R or PSC-S increments on the active protect
line.
PSD-W
For a working line in a 2-fiber BLSR, Protection Switching
Duration-Working (PSD-W) is a count of the number of seconds that
service was carried on the protection line. PSD-W increments on the
failed working line and PSD increments on the active protect line.
Table 8-37 Near-End SONET Path H-byte PMs for the OC-12, OC-48, and OC-192 Cards (continued)
Parameter Definition