- Cisco ONS 15454 Manual
Table Of Contents
- Contents
- About This Manual
- Hardware Installation
- 1.1 Installation Overview
- 1.2 Installation Equipment
- 1.3 Rack Installation
- 1.4 Front Door Access
- 1.5 Backplane Access
- 1.6 EIA Installation
- 1.7 Fan-Tray Assembly Installation
- 1.8 Power and Ground Installation
- 1.9 Alarm, Timing, LAN, and Craft Pin Connections
- 1.10 Coaxial Cable Installation
- 1.11 DS-1 Cable Installation
- 1.12 Card Installation
- 1.13 Fiber-Optic Cable Installation
- 1.14 Cable Routing and Management
- 1.15 Ferrite Installation
- 1.16 ONS 15454 Assembly Specifications
- 1.16.1 Bandwidth
- 1.16.2 Slot Assignments
- 1.16.3 Cards
- 1.16.4 Configurations
- 1.16.5 Cisco Transport Controller
- 1.16.6 External LAN Interface
- 1.16.7 TL1 Craft Interface
- 1.16.8 Modem Interface
- 1.16.9 Alarm Interface
- 1.16.10 EIA Interface
- 1.16.11 Nonvolatile Memory
- 1.16.12 BITS Interface
- 1.16.13 System Timing
- 1.16.14 Power Specifications
- 1.16.15 Environmental Specifications
- 1.16.16 Dimensions
- 1.17 Installation Checklist
- 1.18 ONS 15454 Software and Hardware Compatibility Matrix
- Software Installation
- 2.1 Installation Overview
- 2.2 Computer Requirements
- 2.3 Running the CTC Setup Wizard
- 2.4 Connecting PCs to the ONS 15454
- 2.5 Logging into the ONS 15454
- 2.6 Working with the CTC Window
- 2.6.1 Node View
- 2.6.2 Network View
- 2.6.2.1 CTC Node Colors
- 2.6.2.2 Network View Tasks
- 2.6.2.3 Creating Domains
- 2.6.2.4 Changing the Network View Background Color
- Procedure: Modify the Network or Domain Background Color
- 2.6.2.5 Changing the Network View Background Image
- Procedure: Change the Network View Background Image
- Procedure: Add a Node to the Current Session
- 2.6.3 Card View
- 2.7 CTC Navigation
- 2.8 Viewing CTC Table Data
- 2.9 Printing and Exporting CTC Data
- 2.10 Displaying CTC Data in Other Applications
- Node Setup
- IP Networking
- 4.1 IP Networking Overview
- 4.2 ONS 15454 IP Addressing Scenarios
- 4.2.1 Scenario 1: CTC and ONS 15454s on Same Subnet
- 4.2.2 Scenario 2: CTC and ONS 15454s Connected to Router
- 4.2.3 Scenario 3: Using Proxy ARP to Enable an ONS 15454 Gateway
- 4.2.4 Scenario 4: Default Gateway on CTC Computer
- 4.2.5 Scenario 5: Using Static Routes to Connect to LANs
- 4.2.6 Scenario 6: Static Route for Multiple CTCs
- 4.2.7 Scenario 7: Using OSPF
- 4.3 Viewing the ONS 15454 Routing Table
- SONET Topologies
- 5.1 Before You Begin
- 5.2 Bidirectional Line Switched Rings
- 5.3 Unidirectional Path Switched Rings
- 5.4 Subtending Rings
- 5.5 Linear ADM Configurations
- 5.6 Path-Protected Mesh Networks
- Circuits and Tunnels
- Card Provisioning
- 7.1 Performance Monitoring Thresholds
- 7.2 Provisioning Electrical Cards
- 7.3 Provisioning Optical Cards
- 7.4 Provisioning IPPM
- 7.5 Provisioning the Alarm Interface Controller
- 7.6 Converting DS-1 and DS-3 Cards From 1:1 to 1:N Protection
- Performance Monitoring
- 8.1 Using the Performance Monitoring Screen
- 8.2 Changing Thresholds
- 8.3 Enabling Intermediate-Path Performance Monitoring
- 8.4 Pointer Justification Count Parameters
- 8.5 Performance Monitoring for Electrical Cards
- 8.6 Performance Monitoring for Optical Cards
- Ethernet Operation
- 9.1 Ethernet Cards
- 9.2 Multicard and Single-Card EtherSwitch
- 9.3 Ethernet Circuit Configurations
- 9.4 VLAN Support
- 9.5 Spanning Tree (IEEE 802.1D)
- 9.6 Ethernet Performance and Maintenance Screens
- 9.7 Remote Monitoring Specification Alarm Thresholds
- Alarm Monitoring and Management
- 10.1 Overview
- 10.2 Viewing ONS 15454 Alarms
- 10.3 Alarm Profiles
- 10.4 Suppressing Alarms
- SNMP
- Circuit Routing
- Regulatory and Compliance Requirements
- Regulatory Compliance
- Japan Approvals
- Installation Warnings
- DC Power Disconnection Warning
- DC Power Connection Warning
- Power Supply Disconnection Warning
- Outside Line Connection Warning
- Class 1 Laser Product Warning
- Class I and Class 1M Laser Warning
- Restricted Area Warning
- Ground Connection Warning
- Qualified Personnel Warning
- Invisible Laser Radiation Warning (other versions available)
- More Than One Power Supply
- Unterminated Fiber Warning
- Laser Activation Warning
- Acronyms
- Glossary
- index

8-36
Cisco ONS 15454 Installation and Operations Guide
November 2001
Chapter 8 Performance Monitoring
Performance Monitoring for Optical Cards
Table 8-32 Near-End SONET Path H-byte PMs for the OC-3 Card
Parameter Definition
PPJC-Pdet
Positive Pointer Justification Count, STS Path Detected (PPJC-Pdet) is a
count of the positive pointer justifications detected on a particular path on
an incoming SONET signal.
NPJC-Pdet
Negative Pointer Justification Count, STS Path Detected (NPJC-Pdet) is a
count of the negative pointer justifications detected on a particular path on
an incoming SONET signal.
PPJC-Pgen
Positive Pointer Justification Count, STS Path Generated (PPJC-Pgen) is
a count of the positive pointer justifications generated for a particular path
to reconcile the frequency of the SPE with the local clock.
NPJC-Pgen
Negative Pointer Justification Count, STS Path Generated (NPJC-Pgen) is
a count of the negative pointer justifications generated for a particular
path to reconcile the frequency of the synchronous payload envelope
(SPE) with the local clock.
Table 8-33 Near-End SONET Path PMs for the OC-3 Card
Parameter Definition
Note SONET path PMs will not count unless IPPM is enabled. For additional information, see the
“Enable Intermediate-Path Performance Monitoring” procedure on page 7-25. The far-end
IPPM feature is not supported in Software R3.1. However, SONET path PMs can be monitored
by logging into the far-end node directly.
STS CV-P
Near-End STS Path Coding Violations (CV-P) is a count of BIP errors
detected at the STS path layer (i.e., using the B3 byte). Up to eight BIP
errors can be detected per frame; each error increments the current CV-P
second register.
STS ES-P
Near-End STS Path Errored Seconds (ES-P) is a count of the seconds
when one or more STS path BIP errors were detected. An AIS-P defect
(or a lower-layer, traffic-related, near-end defect) or an LOP-P defect can
also cause an STS ES-P.
STS FC-P
Near-End STS Path Failure Counts (FC-P) is a count of the number of
near-end STS path failure events. A failure event begins with an AIS-P
failure, an LOP-P failure, a UNEQ-P failure, or a TIM-P failure is
declared, or if the STS PTE that is monitoring the path supports ERDI-P
for that path. The failure event ends when these failures are cleared.
STS SES-P
Near-End STS Path Severely Errored Seconds (SES-P) is a count of the
seconds when K (2400) or more STS path BIP errors were detected. An
AIS-P defect (or a lower-layer, traffic-related, near-end defect) or an
LOP-P defect can also cause an STS SES-P.
STS UAS-P
Near-End STS Path Unavailable Seconds (UAS-P) is a count of the
seconds when the STS path was unavailable. An STS path becomes
unavailable when ten consecutive seconds occur that qualify as SES-Ps,
and it continues to be unavailable until ten consecutive seconds occur that
do not qualify as SES-Ps.