- Cisco ONS 15454 Manual
Table Of Contents
- Contents
- About This Manual
- Hardware Installation
- 1.1 Installation Overview
- 1.2 Installation Equipment
- 1.3 Rack Installation
- 1.4 Front Door Access
- 1.5 Backplane Access
- 1.6 EIA Installation
- 1.7 Fan-Tray Assembly Installation
- 1.8 Power and Ground Installation
- 1.9 Alarm, Timing, LAN, and Craft Pin Connections
- 1.10 Coaxial Cable Installation
- 1.11 DS-1 Cable Installation
- 1.12 Card Installation
- 1.13 Fiber-Optic Cable Installation
- 1.14 Cable Routing and Management
- 1.15 Ferrite Installation
- 1.16 ONS 15454 Assembly Specifications
- 1.16.1 Bandwidth
- 1.16.2 Slot Assignments
- 1.16.3 Cards
- 1.16.4 Configurations
- 1.16.5 Cisco Transport Controller
- 1.16.6 External LAN Interface
- 1.16.7 TL1 Craft Interface
- 1.16.8 Modem Interface
- 1.16.9 Alarm Interface
- 1.16.10 EIA Interface
- 1.16.11 Nonvolatile Memory
- 1.16.12 BITS Interface
- 1.16.13 System Timing
- 1.16.14 Power Specifications
- 1.16.15 Environmental Specifications
- 1.16.16 Dimensions
- 1.17 Installation Checklist
- 1.18 ONS 15454 Software and Hardware Compatibility Matrix
- Software Installation
- 2.1 Installation Overview
- 2.2 Computer Requirements
- 2.3 Running the CTC Setup Wizard
- 2.4 Connecting PCs to the ONS 15454
- 2.5 Logging into the ONS 15454
- 2.6 Working with the CTC Window
- 2.6.1 Node View
- 2.6.2 Network View
- 2.6.2.1 CTC Node Colors
- 2.6.2.2 Network View Tasks
- 2.6.2.3 Creating Domains
- 2.6.2.4 Changing the Network View Background Color
- Procedure: Modify the Network or Domain Background Color
- 2.6.2.5 Changing the Network View Background Image
- Procedure: Change the Network View Background Image
- Procedure: Add a Node to the Current Session
- 2.6.3 Card View
- 2.7 CTC Navigation
- 2.8 Viewing CTC Table Data
- 2.9 Printing and Exporting CTC Data
- 2.10 Displaying CTC Data in Other Applications
- Node Setup
- IP Networking
- 4.1 IP Networking Overview
- 4.2 ONS 15454 IP Addressing Scenarios
- 4.2.1 Scenario 1: CTC and ONS 15454s on Same Subnet
- 4.2.2 Scenario 2: CTC and ONS 15454s Connected to Router
- 4.2.3 Scenario 3: Using Proxy ARP to Enable an ONS 15454 Gateway
- 4.2.4 Scenario 4: Default Gateway on CTC Computer
- 4.2.5 Scenario 5: Using Static Routes to Connect to LANs
- 4.2.6 Scenario 6: Static Route for Multiple CTCs
- 4.2.7 Scenario 7: Using OSPF
- 4.3 Viewing the ONS 15454 Routing Table
- SONET Topologies
- 5.1 Before You Begin
- 5.2 Bidirectional Line Switched Rings
- 5.3 Unidirectional Path Switched Rings
- 5.4 Subtending Rings
- 5.5 Linear ADM Configurations
- 5.6 Path-Protected Mesh Networks
- Circuits and Tunnels
- Card Provisioning
- 7.1 Performance Monitoring Thresholds
- 7.2 Provisioning Electrical Cards
- 7.3 Provisioning Optical Cards
- 7.4 Provisioning IPPM
- 7.5 Provisioning the Alarm Interface Controller
- 7.6 Converting DS-1 and DS-3 Cards From 1:1 to 1:N Protection
- Performance Monitoring
- 8.1 Using the Performance Monitoring Screen
- 8.2 Changing Thresholds
- 8.3 Enabling Intermediate-Path Performance Monitoring
- 8.4 Pointer Justification Count Parameters
- 8.5 Performance Monitoring for Electrical Cards
- 8.6 Performance Monitoring for Optical Cards
- Ethernet Operation
- 9.1 Ethernet Cards
- 9.2 Multicard and Single-Card EtherSwitch
- 9.3 Ethernet Circuit Configurations
- 9.4 VLAN Support
- 9.5 Spanning Tree (IEEE 802.1D)
- 9.6 Ethernet Performance and Maintenance Screens
- 9.7 Remote Monitoring Specification Alarm Thresholds
- Alarm Monitoring and Management
- 10.1 Overview
- 10.2 Viewing ONS 15454 Alarms
- 10.3 Alarm Profiles
- 10.4 Suppressing Alarms
- SNMP
- Circuit Routing
- Regulatory and Compliance Requirements
- Regulatory Compliance
- Japan Approvals
- Installation Warnings
- DC Power Disconnection Warning
- DC Power Connection Warning
- Power Supply Disconnection Warning
- Outside Line Connection Warning
- Class 1 Laser Product Warning
- Class I and Class 1M Laser Warning
- Restricted Area Warning
- Ground Connection Warning
- Qualified Personnel Warning
- Invisible Laser Radiation Warning (other versions available)
- More Than One Power Supply
- Unterminated Fiber Warning
- Laser Activation Warning
- Acronyms
- Glossary
- index

5-26
Cisco ONS 15454 Installation and Operations Guide
78-13453-01
Chapter 5 SONET Topologies
Unidirectional Path Switched Rings
Step 7 Disable the ring on the current node:
a. Click the Provisioning > Ring tabs.
b. Highlight the ring and click Delete.
c. On the confirmation message, confirm that this is the ring you want to delete. If so, click Yes.
Step 8 If an OC-N card is a timing source, select the Provisioning > Timing tabs and set timing to Internal.
Step 9 Place the ports on the card out of service:
a. Double-click the card.
b. On the Provisioning > Line tabs in the Status section, choose Out of Service for each port.
Step 10 Physically remove the card.
Step 11 Insert the card into its new slot and wait for the card to boot.
Step 12 To delete the card from its former slot, right-click the card in node view and select Delete from the list
of options.
Step 13 Place the port(s) back in service:
a. To open the card, double-click or right-click the card and select Open.
b. Click the Provisioning tab.
c. From Status choose In Service.
d. Click Apply.
Step 14 Follow the steps described in the “Setting Up BLSRs” section on page 5-10 to reenable the ring using
the same cards (in their new slots) and ports for east and west. Use the same BLSR Ring ID and Node
ID that was used before the trunk card was moved.
Step 15 Recreate the circuits that were deleted. See the “Create an Automatically Routed Circuit” procedure on
page 6-2 for instructions.
Step 16 If you use line timing and the card you are moving is a timing reference, reenable the timing parameters
on the card. See the “Set up ONS 15454 Timing” procedure on page 3-14 for instructions.
5.3 Unidirectional Path Switched Rings
UPSRs provide duplicate fiber paths around the ring. Working traffic flows in one direction and
protection traffic flows in the opposite direction. If a problem occurs in the working traffic path, the
receiving node switches to the path coming from the opposite direction.
CTC automates ring configuration. UPSR traffic is defined within the ONS 15454 on a circuit-by-circuit
basis. If a path-protected circuit is not defined within a 1+1 or BLSR line protection scheme and path
protection is available and specified, CTC uses UPSR as the default.
Figure 5-20 shows a basic UPSR configuration. If Node ID 0 sends a signal to Node ID 2, the working
signal travels on the working traffic path through Node ID 1. The same signal is also sent on the protect
traffic path through Node ID 3. If a fiber break occurs (Figure 5-21), Node ID 2 switches its active
receiver to the protect signal coming through Node ID 3.
Because each traffic path is transported around the entire ring, UPSRs are best suited for networks where
traffic concentrates at one or two locations and is not widely distributed. UPSR capacity is equal to its
bit rate. Services can originate and terminate on the same UPSR, or they can be passed to an adjacent
access or interoffice ring for transport to the service-terminating location.